Skip to main content

Cell Physiology: Liaison Between Structure and Function

  • Chapter
  • First Online:
  • 2855 Accesses

Abstract

Cell is the basic functional unit in the body. There are about 200 different (specialized) types of cells in human body, although each is genetically the same. Yet, they are different in size, shape and function due to the fact that not all the genes and not the same set of genes are functional or being used in each particular cell type (gene selectivity). Despite this diversity of cell composition and function, most cells in the body have the same structural organization. There are between 50 and 200 trillion of cells in the body of an average person (estimated) and they are constantly being dividing, metabolizing, working, dying and being replaced by integrated mechanisms. Therefore, structure, morphology, and function are tightly coupled in the cell giving to each specific cellular entity unique and distinguishable features.

Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.

Marie Curie (1867–1934)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Toole, M.T.: Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health. Saunders Elsevier, Philadelphia (2003)

    Google Scholar 

  2. Brown, L., Holme, T.: Chemistry for Engineering Students. Mary Finch, Books/Cole, Cengage Learning, Belmont (2011). ISBN 13:078-1-4390-4791-0

    Google Scholar 

  3. Johnson, A.T.: Biology for engineers. Taylor & Francis, Boca Raton (2011). ISBN 978-1420077636

    Google Scholar 

  4. Andjus, R.K.: General physiology and biophysics [in Serbian]. Modules 1–7. Center for multidisciplinary studies. University of Belgrade, Belgrade, Serbia (2002)

    Google Scholar 

  5. Hall, G.E., Guyton, A.C.: Textbook of medical physiology. Sounders Elsevier, Philadelphia (2011). ISBN 978-1-4160-4574-8

    Google Scholar 

  6. Shuler, M.L., Kargi, F.: Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, PTR, Upper Saddle River (2002). ISBN 0-13-081908-5

    Google Scholar 

  7. Saltzman, M.W.: Biomedical engineering. Cambridge University Press, New York (2009). ISBN 978-0-521-840099-6

    Book  Google Scholar 

  8. Pavlovic, M., Balint, B.: Stem Cells and Tissue Engineering. Springer Briefs in Electrical and Computer Engineering. Springer, New York (2013), pp. i–xii, 1–153. ISBN 978-1-4614-5504-2

    Book  Google Scholar 

  9. Berger, S.A., Goldsmith, W., Lewis, E.R. (eds.): Introduction to bioengineering. Oxford University Press, New York (1996). ISBN 0-19-856516

    Google Scholar 

  10. Domach, M.M.: Introduction to biomedical engineering, 2nd edn. Prentice Hall, Upper Saddle River (2009). ISBN 0-13-602003-8

    Google Scholar 

  11. Palsson, B.P., Bhatia, S.N.: Tissue Engineering. Prentice Hall, Englewood Cliffs (2003). ISBN 0130416967

    Book  Google Scholar 

  12. Bronzino, J.D. (ed.): The Biomedical Engineering Handbook, vol. 1 & II, 2nd edn. CRC, Boca Raton (2000). ISBN 0-8493-0461-X

    Google Scholar 

  13. Rashidi, H.H., Buehler, L.: Bioinformatics basics. Applications in biological science and medicine. CRC, New York (2000). ISBN 0-8493-2375-4

    Google Scholar 

  14. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. Massachusetts Institute of Technology, Cambridge (2004). ISBN 0-262-10106-8

    Google Scholar 

  15. Huang, Y.L.X., Shao, X.F., Huang, Q., Deng, M.Y., Wu, L., Zeng, Q.L., Shao, J.Y.: MicroRNAmiR-21 over expression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14(11), 2348–2360 (2008)

    Article  Google Scholar 

  16. Zhao, J.J., Lin, J., Yang, H., Kong, W., He, L., Ma, X., Coppola, D., Cheng, J.Q.: MicroRNA-negatively regulates Estrogen receptor and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008)

    Article  Google Scholar 

  17. Zheng, Y., Kwoh, C.K.: Cancer classification with microRNA expression patterns found by an information theory approach. J. Comput. 1(5), 30–39 (2006)

    Article  Google Scholar 

  18. Zhu, S., Si, M.L., Wu, H., Mo, Y.Y.: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1(TPM1). J. Biol. Chem. 282, 14328–14336 (2007)

    Article  Google Scholar 

  19. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., Mo, Y.Y.: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18(3), 350–359 (2008)

    Article  Google Scholar 

  20. Kotlarchyk, A., Khoshgoftaar, T.M., Pavlovic, M., Zhuang, H., Pandya, A.S.: Identification of microRNA biomarkers for cancer by combining multiple feature selection techniques. J. Comput. Meth. Sci. Eng. 11(5–6), 283–298 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pavlovic, M. (2015). Cell Physiology: Liaison Between Structure and Function. In: Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10798-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10798-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10797-4

  • Online ISBN: 978-3-319-10798-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics