Skip to main content

Observability of Switched Linear Systems

  • Chapter
  • First Online:
Book cover Hybrid Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 457))

Abstract

Observability of switched linear systems has been well studied during the past decade and depending on the notion of observability, several criteria have appeared in the literature. The main difference in these approaches is how the switching signal is viewed: Is it a fixed and known function of time, is it an unknown external signal, is it the result of a discrete dynamical system (an automaton) or is it controlled and is therefore an input? We will focus on the recently introduced geometric characterization of observability, which assumes knowledge of the switching signal. These geometric conditions depend on computing the exponential of the matrix and require the exact knowledge of switching times. To relieve the computational burden, some relaxed conditions that do not rely on the switching times are given; this also allows for a direct comparison of the different observability notions. Furthermore, the generalization of the geometric approach to linear switched differential algebraic systems is possible and presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, for simplicity, we are misusing the notation by writing \(u(t)=e^{2t}+\delta _{-1}+\delta _0\) because \(u\) is a piecewise-smooth distribution and therefore only the evaluations \(u(t-)\), \(u(t+)\), \(u[t]\) are well defined. The correct way of writing would be to write \(\hat{u}(t)=e^{2t}\) and \(u=\hat{u}_\mathbb {D}+\delta _{-1}+\delta _0\).

References

  1. Armentano, V.A.: The pencil (sE-A) and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24, 616–638 (1986)

    Google Scholar 

  2. Babaali, M., Egerstedt, M.: Observability of switched linear systems. In: Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2993, pp. 48–63. Springer (2004)

    Google Scholar 

  3. Babaali, M., Pappas, G.J.: Observability of switched linear systems in continuous time. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 3414, pp. 103–117. Springer, Berlin (2005)

    Google Scholar 

  4. Baglietto, M., Battistelli, G., Scardovi, L.: Active mode observation of switching systems based on set-valued estimation of the continuous state. Int. J. Robust Nonlinear Control 19(14), 1521–1540 (2009)

    Article  MathSciNet  Google Scholar 

  5. Balluchi, A., Benvenuti, L., Di Benedetto, M., Sangiovanni-Vincentelli, A.: Observability for hybrid systems. In: Proceedings of 42nd IEEE Conference Decision and Control, Hawaii, USA, vol. 2, pp. 1159–1164 (2003). doi:10.1109/CDC.2003.1272764

  6. Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Lin. Alg. Appl. 436(10), 4052–4069 (2012). doi:10.1016/j.laa.2009.12.036

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, T., Trenn, S.: The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. Appl. 33(2), 336–368 (2012). doi:10.1137/110826278

  8. Berger, T., Trenn, S.: Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal. Appl. 34(1), 94–101 (2013). doi:10.1137/120883244

    Article  MathSciNet  MATH  Google Scholar 

  9. Boukhobza, T., Hamelin, F.: Observability of switching structured linear systems with unknown input. A graph-theoretic approach. Automatica 47(2), 395–402 (2011)

    Google Scholar 

  10. Chaib, S., Boutat, D., Benali, A., Barbot, J.P.: Observability of the discrete state for dynamical piecewise hybrid systems. Nonlin. Anal. Th. Meth. Appl. 63(3), 423–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Collins, P., van Schuppen, J.H.: Observability of piecewise-affine hybrid systems. In: Alur, R., Pappas G.J. (eds.) Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2993, pp. 265–279. Springer-Verlag (2004)

    Google Scholar 

  12. De Santis, E.: On location observability notions for switching systems. Syst. Control Lett. 60(10), 807–814 (2011). doi: http://dx.doi.org/10.1016/j.sysconle.2011.06.004

  13. Fliess, M., Join, C., Perruquetti, W.: Real-time estimation for switched linear systems. In: Proceedings of 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 941–946 (2008). doi: 10.1109/CDC.2008.4739053

  14. Gantmacher, F.R.: The Theory of Matrices (Vol. I & II). Chelsea, New York (1959)

    Google Scholar 

  15. Ji, Z., Wang, L., Guo, X.: On controllability of switched linear systems. IEEE Trans. Autom. Control 53(3), 796–801 (2008). doi:10.1109/TAC.2008.917659

    Article  MathSciNet  Google Scholar 

  16. Lee, C., Ping, Z., Shim, H.: Real time switching signal estimation of switched linear systems with measurement noise. In: Proceedings of 12th European Control Conference 2013, Zurich, Switzerland, pp. 2180–2185 (2013)

    Google Scholar 

  17. Liu, B., Marquez, H.: Controllability and observability for a class of controlled switching impulsive systems. IEEE Trans. Autom. Control 53(10), 2360–2366 (2008)

    Article  MathSciNet  Google Scholar 

  18. Medina, E.A., Lawrence, D.A.: State estimation for linear impulsive systems. In: Proceedings of American Control Conference 2009, pp. 1183–1188 (2009)

    Google Scholar 

  19. Medina, E.A., Lawrence, D.A.: Reachability and observability of linear impulsive systems. Automatica 44, 1304–1309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mincarelli, D., Floquet, T.: On second-order sliding mode observers with residuals’ projection for switched systems. In: Proceedings of 51st IEEE Conference on Decision and Control, Maui, USA, pp. 1929–1934 (2012). doi: 10.1109/CDC.2012.6426719

  21. Orani, N., Pisano, A., Franceschelli, M., Giua, A., Usai, E.: Robust reconstruction of the discrete state for a class of nonlinear uncertain switched systems. Nonlinear Anal. Hybrid Syst. 5(2), 220–232 (2011). doi:10.1016/j.nahs.2010.10.011

    Article  MathSciNet  MATH  Google Scholar 

  22. Petreczky, M.: Realization theory of hybrid systems. Ph.D. thesis, Vrije Universiteit, Amsterdam (2006)

    Google Scholar 

  23. Petreczky, M.: Realization theory of linear and bilinear switched systems: A formal power series approach—part I: realization theory of linear switched systems. ESAIM Control Optim. Calc. Var., pp. 410–445 (2011)

    Google Scholar 

  24. Petreczky, M.: Realization theory of linear and bilinear switched systems: A formal power series approach—part II: bilinear switched systems. ESAIM Control Optim. Calc. Var., pp. 446–471 (2011)

    Google Scholar 

  25. Petreczky, M., van Schuppen, J.H.: Realization theory for linear hybrid systems. IEEE Trans. Autom. Control 55(10), 2282–2297 (2010)

    Article  Google Scholar 

  26. Petreczky, M., van Schuppen, J.H.: Span-reachability and observability of bilinear hybrid systems. Automatica 46(3), 501–509 (2010). doi:10.1016/j.automatica.2010.01.008

    Article  MathSciNet  MATH  Google Scholar 

  27. Ríos, H., Davila, J., Fridman, L.: High-order sliding mode observers for nonlinear autonomous switched systems with unknown inputs. J. Franklin Inst. 349(10), 2975–3002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. De Santis, E., Di Benedetto, M.D., Pola, G.: A structural approach to detectability for a class of hybrid systems. Automatica 45(5), 1202–1206 (2009). doi:10.1016/j.automatica.2008.12.014

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwartz, L.: Théorie des Distributions I, II. No. IX, X in Publications de l’institut de mathématique de l’Universite de Strasbourg. Hermann, Paris (1950, 1951)

    Google Scholar 

  30. Shim, H., Tanwani, A.: Hybrid-type observer design based on a sufficient condition for observability in switched nonlinear systems. Int. J. Robust Nonlinear Control (Special Issue on High Gain Observers and Nonlinear Output Feedback Control 24(6), 1064–1089, 2014). doi:10.1002/rnc.2901

  31. Sun, Z., Ge, S.S.: Switched linear systems. Communications and Control Engineering. Springer-Verlag, London (2005). doi: 10.1007/1-84628-131-8

  32. Tanwani, A., Liberzon, D.: Invertibility of switched nonlinear systems. Automatica 46(12), 1962–1973 (2010). doi:10.1016/j.automatica.2010.08.002

  33. Tanwani, A., Trenn, S.: An observer for switched differential-algebraic equations based on geometric characterization of observability. In: Proceedings of 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 5981–5986 (2013). doi:10.1109/CDC.2013.6760833

  34. Tanwani, A., Trenn, S.: Observability of switched differential-algebraic equations for general switching signals. In: Proceedings of 51st IEEE Conference on Decision and Control, Maui, USA, pp. 2648–2653 (2012). doi: 10.1109/CDC.2012.6427087

  35. Tanwani, A., Trenn, S.: On observability of switched differential-algebraic equations. In: Proceedings of 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 5656–5661 (2010). doi:10.1109/CDC.2010.5717685

  36. Tanwani, A., Shim, H., Liberzon, D.: Observability for switched linear systems: Characterization and observer design. IEEE Trans. Autom. Control 58(4), 891–904 (2013). doi:10.1109/TAC.2012.2224257

    Article  MathSciNet  Google Scholar 

  37. Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany (2009). URL http://www.db-thueringen.de/servlets/DocumentServlet?id=13581

  38. Trenn, S.: Regularity of distributional differential algebraic equations. Math. Control Signals Syst. 21(3), 229–264 (2009). doi:10.1007/s00498-009-0045-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Trenn, S.: Switched differential algebraic equations. In: Vasca, F., Iannelli L. (eds.) Dynamics and Control of Switched Electronic Systems—Advanced Perspectives for Modeling, Simulation and Control of Power Converters, chap. 6, pp. 189–216. Springer, London (2012). doi:10.1007/978-1-4471-2885-4_6

  40. Trenn, S.: Stability of switched DAEs. In: Daafouz, J., Tarbouriech, S., Sigalotti, M. (eds.) Hybrid Systems with Constraints, Automation—Control and Industrial Engineering Series, pp. 57–83. Wiley, London (2013). doi:10.1002/9781118639856.ch3

  41. Trenn, S., Wirth, F.R.: Linear switched DAEs: Lyapunov exponent, converse Lyapunov theorem, and Barabanov norm. In: Proceedings of 51st IEEE Conference on Decision and Control, Maui, USA, pp. 2666–2671 (2012). doi: 10.1109/CDC.2012.6426245

  42. Vidal, R., Chiuso, A., Sastry, S.: Observability and identifiability of jump linear systems. In: Proceedings of 41st IEEE Conference on Decision and Control, pp. 3614–3619 (2002)

    Google Scholar 

  43. Vidal, R., Chiuso, A., Soatto, S., Sastry, S.: Observability of linear hybrid systems. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 2623, pp. 526–539. Springer, Berlin (2003)

    Google Scholar 

  44. Vu, L., Liberzon, D.: Invertibility of switched linear systems. Automatica 44(4), 949–958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weierstraß, K.: Zur Theorie der bilinearen und quadratischen Formen. Berl. Monatsb. pp. 310–338 (1868)

    Google Scholar 

  46. Wong, K.T.: The eigenvalue problem \(\lambda Tx + Sx \). J. Diff. Eqns. 16, 270–280 (1974)

    Article  MATH  Google Scholar 

  47. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach, 3rd edn. Springer, New York (1985)

    Book  MATH  Google Scholar 

  48. Xie, G., Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Trans. Autom. Control 49(6), 960–966 (2004). doi:10.1109/TAC.2004.829656

    Article  MathSciNet  Google Scholar 

  49. Yu, L., Zheng, G., Boutat, D., Barbot, J.P.: Observability and observer design for a class of switched systems. IET Control Theory Appl. 5(9), 1113–1119 (2011). doi:10.1049/iet-cta.2010.0475

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Trenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petreczky, M., Tanwani, A., Trenn, S. (2015). Observability of Switched Linear Systems. In: Djemai, M., Defoort, M. (eds) Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-10795-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10795-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10794-3

  • Online ISBN: 978-3-319-10795-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics