Skip to main content

State Estimation on Switching Systems via High-Order Sliding Modes

  • Chapter
  • First Online:
Hybrid Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 457))

Abstract

In this chapter, the problem of continuous and discrete state estimation for switched nonlinear systems is solved using High-Order Sliding-Mode techniques. In the first part of this chapter, the systems with exogenous switchings are studied. The solvability of the observation problem, for the continuous and discrete states, is proposed using structural properties of the system. This structural properties are exploited to design the observers. The high-order sliding-mode techniques are introduced to guarantee finite time convergence to zero of the estimation error for the continuous state. The discrete state is reconstructed using the information of the equivalent output injection. The continuous state observation, discrete state and unknown input reconstruction for switched systems with autonomous switchings are realized in the second part of the chapter. In this part, the structural properties of the systems are exploited to ensure the observability of the continuous and discrete states. Finite-time convergence to zero of the estimation error, for continuous and discrete states, are achieved. The information of the equivalent output injection is used for unknown input reconstruction. Simulation results are provided to illustrate the methods exposed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that the observer \(j=1\) is working for \(\lambda (x)=1,2\) since its observability mappings are equals.

  2. 2.

    These parameters provide a minor convergence time to 1.146 s.

References

  1. Alessandri, A., Coletta, P.: Design of observers for switched discretetime linear systems. In: Proceedings of the 2003 American Control Conference, Denver, CO, USA (2003) pp. 2785–2790

    Google Scholar 

  2. Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44(7), 1859–1866 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angulo, M.T., Fridman, L., Levant, A.: Robust exact finite-time output based control using high-order sliding modes. Int. J. Syst. Sci. 42(11), 1847–1857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbot, J.P., Saadaoui, H., Djemai, M., Manamanni, N.: Nonlinear observer for autonomous switching systems with jumps. Nonlinear Anal.: Hybrid Syst. 1(4), 537–547 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bartolini, G., Ferrara, A., Punta, E., Usai, E.: Chattering elimination in the hybrid control of constrained manipulators via first/second order sliding modes. Dyn. Control 9(2), 99–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bejarano, F.J., Pisano, A.: Switched observers for switched linear systems with unknown inputs. IEEE Trans. Autom. Control 56(3), 681–686 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bejarano, F.J., Pisano, A., Usai, E.: Finite-time converging jump observer for switched linear systems with unknown inputs. Nonlinear Anal.: Hybrid Syst. 5(2), 174–188 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864–1876 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobtsov, A.A., Efimov, D.V., Pyrkin, A.: Hybrid adaptive observers for locally lipschitz systems with application to mechanical oscillators. Control Applications (CCA) and Intelligent Control, (ISIC), pp. 619–624. St. Petersburg, Russia (2009)

    Google Scholar 

  10. Boukhobza, T., Hamelin, F.: Observability of switching structured linear systems with unknown input. A graph theoretic approach. Automatica 47, 395–402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Branicky, M.S.: Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(5), 475–482 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaib, S., Boutat, D., Benali, A., Barbot, J.P.: Observability of the discrete state for dynamical piecewise hybrid systems. Nonlinear Anal. 63, 423–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaib, S., Boutat, D., Benali, A., Kratz, F.: Failure detection and reconstruction in switched nonlinear systems. Nonlinear Anal.: Hybrid Syst. 3, 225–238 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Davila, J., Ríos, H., Fridman, L.: State observation for nonlinear switched systems using nonhomogeneous high-order sliding mode observers. Asian J. Control 14(4), 911–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. De-Santis, E., Di-Benedetto, M.D., Pola, G.: A structural approach to detectability for a class of hybrid systems. Automatica 45, 1202–1206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Defoort, M., Djemai, M., Floquet, T., Perruquetti, W.: Robust finite time observer design for multicellular converters. Int. J. Syst. Sci. 38(10), 773–791 (2011)

    MathSciNet  Google Scholar 

  17. Efimov, D., Zolghadri, A., RaĂ¯ssi, T.: Actuator fault detection and compensation under feedback control. Automatica 47(8), 1699–1705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filippov, A.F.: Differential Equations with Discontinuos Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    Book  Google Scholar 

  19. Isidori, A.: Nonlinear Control Syst. Springer, London (1996)

    Google Scholar 

  20. Kang, W., Barbot, J.P., Xu, L.: On the observability of nonlinear and switched systems. In: Ghosh, B., Martin, C., Zhou, Y. (eds.) Emergent Problems in Nonlinear Systems and Control. Lecture Notes in Control and Information Science, pp. 199–216. Springer, Berlin (2009)

    Google Scholar 

  21. Khalil, H.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  22. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhuser, Boston (2003)

    Google Scholar 

  24. Lin, H., Antsaklis, P.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    Google Scholar 

  25. Lygeros, J., Johansson, K.H., Simić, S.N., Zhang, J., Sastry, S.S.: Dynamical properties of hybrid automata. IEEE Trans. Autom. Control 48(1), 2–17 (2003)

    Article  Google Scholar 

  26. Navarro-Lopez, E.M., Carter, R.: Hybrid automata: an insight into the discrete abstraction of discontinuous systems. Int. J. Syst. Sci. 42(11), 1883–1898 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Orani, N., Pisano, A., Franceschelli, M., Giua, A., Usai, E.: Robust reconstruction of the discrete state for a class of nonlinear uncertain switched systems. Nonlinear Anal.: Hybrid Syst. 5(2), 220–232 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Pina, L., Botto, M.A.: Simultaneous state and input estimation of hybrid systems with unknown inputs. Automatica 42, 1755–1762 (2006)

    Article  MathSciNet  Google Scholar 

  29. Ríos, H., Davila, J., Fridman, L.: High-order sliding mode observers for nonlinear autonomous switched systems with unknown inputs. J. Franklin Inst. 349(10), 2975–3002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, Y., Floquet, T., Belkoura, L., Perruquetti, W.: Switching time estimation for linear switched systems: an algebraic approach. In: Proceedings of the 48th IEEE Conference Decision Control and 28th Chinese Control Conference, Shangai, P.R. China (2009) pp. 3909–3913

    Google Scholar 

  31. Utkin, V., Guldner, J., Shi, J.: Sliding Modes in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  32. Vu, L., Liberzon, D.: Invertibility of switched linear systems. Automatica 44, 949–958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, L., Barbot, J.P., Boutat, D., Benmerzouk, D.: Observability forms for switched systems with zeno phenomenon or high switching frequency. IEEE Trans. Autom. Control 56(2), 436–441 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from CONACyT grant 132125, 151855, and 270504; PAPIIT 113613; SIP-IPN and CDA-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector RĂ­os .

Editor information

Editors and Affiliations

Appendix

Appendix

6.1.1 Proof of Theorem 6.1

System (6.14), under Assumption 6.7, can be represented, on new coordinates \(z\), as:

$$\begin{aligned} \dot{z}&=Az+B\varphi _{\lambda ^{*}}(z),\nonumber \\ y_{z}&=Cz, \end{aligned}$$
(6.58)

where

$$\begin{aligned} \begin{array}{ccc} A=\left[ \begin{array}{cccc}0 &{} 1 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 1 \\ 0 &{} 0 &{} \cdots &{} 0\end{array}\right] _{n\times n},&{} B=\left[ \begin{array}{c} 0 \\ \vdots \\ 0 \\ 1\end{array}\right] _{n\times 1},&C=\left[ \begin{array}{cccc}1&0&\cdots&0\end{array}\right] _{1\times n}, \end{array} \end{aligned}$$
(6.59)
$$\begin{aligned} \varphi _{\lambda ^{*}}(z)=\left( L_{f_{\lambda ^{*}}(x)}^{n}h(x)\right) \vert _{x=\varPhi _{\lambda ^{*}}^{-1}(z)}. \end{aligned}$$
(6.60)

Notice that the functions \(\varphi _{i^{*}}(z)\) contain the unknown input that acts on the system. On the other hand, the observers (6.8), under Assumption 6.7, can be represented as:

$$\begin{aligned} \dot{\hat{z}}_{j}&=A\hat{z}_{j}+B{\varphi }_{j}(\hat{z}_{j})+\nu _{j},\nonumber \\ y_{\hat{z}_{j}}&=C\hat{z}_{j}, \end{aligned}$$
(6.61)

where \({\varphi }_{j}(\hat{z}_{j})=\left( L_{{f}(\hat{x}_{j})}^{n}h(\hat{x}_{j})\right) \vert _{x_{j}=\varPhi _{j}^{-1}(\hat{z}_{j})}\).

Define the state estimation errors as

$$\begin{aligned} e_{{z}_{j}}=\hat{z}_{j}-z. \end{aligned}$$
(6.62)

Thus, the state estimation error dynamics takes the following form:

$$\begin{aligned} {\dot{e}}_{{z}_{j}}=Ae_{{z}_{j}}+B\varPsi _{j}(\hat{z}_{j},z)+\nu _{j}, \end{aligned}$$
(6.63)

where \(\varPsi _{j}(\hat{z}_{j},z)={\varphi }_{j}(\hat{z}_{j})-\varphi _{\lambda ^{*}}(z)\). If it is possible to find appropriate correction terms \(\nu _{j}\), which can steer the vector \(e_{{z}_{j}}\) to zero, then equality \(\hat{z}_{j}=z\), will be satisfied only for the case when \(j=\lambda ^{*}\). Therefore, only one of the observers can be associated with the corresponding state observation error in the time interval \(t\in [0,t_{1})\).

On the other hand, it is not desirable to design the correction terms in the coordinates \(\hat{z}_{j}\) but in the coordinates \(\hat{x}_{j}\). Therefore, defining the following output error vector:

$$\begin{aligned} \mathbf {\varepsilon }_{j}=\left[ \begin{array}{c}\varepsilon _{{j},1} \\ \vdots \\ \varepsilon _{{j},n}\end{array}\right] =\left[ \begin{array}{c}e_{{y}_{j}} \\ \vdots \\ e_{{y}_{j}}^{(n-1)}\end{array}\right] . \end{aligned}$$
(6.64)

The state observation error dynamics (6.63) turns into output observation error dynamics as follows:

$$\begin{aligned} \dot{\varepsilon }_{j}=A{\varepsilon _{j}}+B\varPsi _{j}(\varPhi _{j}(\hat{x} _{j}),\varPhi _{\lambda ^*}(x))+\nu _{j}. \end{aligned}$$
(6.65)

In an extended structure

$$\begin{aligned} \begin{array}{l} \dot{\varepsilon }_{j,1}=\varepsilon _{j,2}+\nu _{j,1}, \\ \dot{\varepsilon }_{j,2}=\varepsilon _{j,3}+\nu _{j,2}, \\ \ \ \ \ \ \ \vdots \\ \dot{\varepsilon }_{j,n}=\varPsi _{j}(\varPhi _{j}(\hat{x}_{j}),\varPhi _{\lambda ^{*}}(x))+\nu _{j,n}. \end{array} \end{aligned}$$
(6.66)

Notice that the dynamic structures (6.66) are very similar to the high-order sliding-mode differentiator (6.12). Thus, if a variable change is realized in the structure (6.13), it is possible to obtain the following sliding-mode differentiator form:

$$\begin{aligned} \dot{\varepsilon }_{j,1}=&\varepsilon _{j,2}-\alpha _{j,1}M_{j}^{\frac{1}{n}}\left| \varepsilon _{j,1} \right| ^{\frac{n-1}{n}}\text {sign}\left( \varepsilon _{j,1}\right) , \nonumber \\ \dot{\varepsilon }_{j,2}=&\varepsilon _{j,3}-\alpha _{j,2}M_{j}^{\frac{1}{n-1}}|\varepsilon _{j,2} -\dot{\varepsilon }_{j,1}|^{\frac{n-2}{n-1}}\text {sign}\left( \varepsilon _{j,2} -\dot{\varepsilon }_{j,1}\right) , \nonumber \\ \vdots&\nonumber \\ \dot{\varepsilon }_{j,n}=&\varPsi _{j}(\varPhi _{j}(\hat{x}_{j}), \varPhi _{\lambda ^*}(x))-\alpha _{j,n}M_{j}\text {sign}\left( \varepsilon _{j,n}-\dot{\varepsilon }_{j,n-1}\right) . \end{aligned}$$
(6.67)

Let the parameters \(\alpha _{j,k}\) be chosen recursively and sufficiently large according to the high-order sliding-mode differentiator properties described in [22]. In view of the Assumption 6.10, the following equality is satisfied in finite time when \(j=\lambda ^{*}\):

$$\begin{aligned} \left[ \varepsilon _{\lambda ^*,1},\varepsilon _{\lambda ^*,2},\ldots ,\varepsilon _{\lambda ^*,n}\right] \equiv \left[ 0,0,\ldots ,0\right] . \end{aligned}$$
(6.68)

The condition \(\varepsilon _{\lambda ^*,1}\equiv 0\), \(\forall t\in [t_{\lambda ^*},t_{1})\) implies that \(\left[ \varepsilon _{\lambda ^*,2},\ldots ,\varepsilon _{\lambda ^*,n}\right] \equiv \left[ 0,\ldots ,0\right] \), \(\forall t \in [t_{\lambda ^*},t_{1})\) with \(t_{1}\ge T_{\delta }\). To prove that, assume that the condition \(\varepsilon _{\lambda ^*,1}\equiv 0\) is satisfied in a nonzero time interval. This condition implies that \(\dot{\varepsilon }_{\lambda ^*,1}\equiv 0\) in the same time interval. Thus, from the first row of (6.67) it is obtained that \(\varepsilon _{\lambda ^*,2}\equiv 0\). Then, since \(\varepsilon _{\lambda ^*,2}\equiv 0\) and \(\dot{\varepsilon }_{\lambda ^*,1}\equiv 0\) from the second row of (6.67) it is obtained that \(\varepsilon _{\lambda ^*,3}\equiv 0\). If the same procedure is iterated the following expressions are obtained

$$\begin{aligned} \varepsilon _{\lambda ^*,k}\equiv 0,\quad \forall k=1,\ldots ,n. \end{aligned}$$
(6.69)

Given Assumption 6.10, the last row of (6.67) defines the following differential inclusion

$$\begin{aligned} \dot{\varepsilon }_{\lambda ^*,n}\in \left[ -M_{\lambda ^*},M_{\lambda ^*}\right] -\alpha _{\lambda ^*,n} M_{\lambda ^*}\text {sign}\left( \varepsilon _{\lambda ^*,n}-\dot{\varepsilon }_{\lambda ^*,n-1}\right) , \end{aligned}$$
(6.70)

where \(\varPsi _{\lambda ^*}(\cdot )\in \left[ -M_{\lambda ^*},M_{\lambda ^*}\right] \). Therefore, according to [22], the dynamics (6.67), for \(j=\lambda ^{*}\), converges to zero after a finite time, i.e., \(\varepsilon _{\lambda ^*}\equiv 0 \ \forall t>t_{\lambda ^*}\), and according to Assumption 6.7, it is ensure that the state estimation error \(e_{x_{\lambda ^*}}=\hat{x}_{\lambda ^*}-x\) also converge to zero in finite time in spite of the unknown input. Notice that it is always possible to select the gain \(M_{\lambda ^*}\) sufficiently large such that \(t_{\lambda ^*}<t_{1}\ge T_{\delta }\). In this way, the theorem is proven.

6.1.2 Proof of Proposition 6.1

Let us consider the dynamics (6.67) on the time instants before and after the switching time \(t_{1}\), i.e.,

$$\begin{aligned} \dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,1}}&= \varepsilon _{\varDelta _{\lambda ^*\kappa ,2}}-\alpha _ {\varDelta _{\lambda ^*\kappa ,1}}M_{\varDelta _{\lambda ^*\kappa }}^{\frac{1}{n}}\left| \varepsilon _ {\varDelta _{\lambda ^*\kappa ,1}} \right| ^{\frac{n-1}{n}}\text {sign}\left( \varepsilon _{\varDelta _{\lambda ^*\kappa ,1}}\right) , \nonumber \\ \dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,2}}&= \varepsilon _{\varDelta _{\lambda ^*\kappa ,3}} -\alpha _{\varDelta _{\lambda ^*\kappa ,2}}M_{\varDelta _{\lambda ^*\kappa }}^{\frac{1}{n-1}}\left| \varepsilon _{\varDelta _{\lambda ^*\kappa ,2}} -\dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,1}}\right| ^{\frac{n-2}{n-1}}\text {sign}\left( \varepsilon _{\varDelta _ {\lambda ^*\kappa ,2}}-\dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,1}}\right) , \nonumber \\&\vdots&\nonumber \\ \dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,n}}&= \varPsi _{\varDelta _{\lambda ^*\kappa }}(\cdot )-\alpha _ {\varDelta _{\lambda ^*\kappa ,n}}M_{\varDelta _{\lambda ^*\kappa }}\text {sign}\left( \varepsilon _{\varDelta _ {\lambda ^*\kappa ,n}}-\dot{\varepsilon }_{\varDelta _{\lambda ^*\kappa ,n-1}}\right) , \end{aligned}$$
(6.71)

where \(\lambda ^*\) is the current operating mode, \(\kappa \in \fancyscript{Q}\), with \(\kappa \ne \lambda ^*\), represents the next operating mode, and

$$\begin{aligned}&\varepsilon _{\varDelta _{\lambda ^*\kappa ,k}}=\varepsilon _{\varDelta _{\lambda ^*,k}}(t_{1}^{-})- \varepsilon _{\varDelta _{\kappa ,k}}(t_{1}^{+}), \ \forall k=1,\ldots ,n, \\&\varPsi _{\varDelta _{\lambda ^*\kappa }}(\cdot ) = \varPsi _{\varDelta _{\lambda ^*}}(t_{1}^{-})-\varPsi _{\varDelta _{\kappa }}({t_{1}^{+}}). \end{aligned}$$

If the reset equations (6.31) are applied on each switching time, then the trajectories of the system (6.71) always remain in the sliding surface, i.e., \(\varepsilon _{\varDelta _{\lambda ^*\kappa ,k}}=0\). Thus, the state estimation is maintained in spite of the switchings. Notice that due to the nature of the system, the transformations \(\varPhi _{\lambda (x)}\) do not present jumps in the switching times. Nevertheless, the jumps can appear in the trajectories generated by the observers. However, the reset equations (6.31) avoid this happening.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

RĂ­os, H., Davila, J., Fridman, L. (2015). State Estimation on Switching Systems via High-Order Sliding Modes. In: Djemai, M., Defoort, M. (eds) Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-10795-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10795-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10794-3

  • Online ISBN: 978-3-319-10795-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics