Skip to main content

Realization Theory of Linear Hybrid Systems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 457))

Abstract

This chapter presents a survey on realization theory for linear hybrid systems. Recall that for linear systems, realization theory addresses the problem of existence and minimality of a linear time-invariant state-space representation of an input–output map (transfer function). The results of linear realization theory have turned out to be useful for control synthesis, model reduction, and system identification. In this chapter, we address a similar problem for linear hybrid systems and linear switched systems. We will also discuss the implications of realization theory for estimation and control of hybrid systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Two columns are considered equal, if all their respective entries are equal.

References

  1. Anthoulas, C.A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  2. Bartosiewicz, Z.: Realizations of polynomial systems. Algebraic and Geometric Methods in Nonlinear Control Theory, vol. 29, pp. 45–54. Reidel, Dordrecht (1986)

    Chapter  Google Scholar 

  3. Bastug, M., Petreczky, M., Wisniewski, R., Leth, J.: Model reduction by moment matching for linear switched systems. In: Proceedings of the American Control Conference, to appear

    Google Scholar 

  4. Berstel, J., Reutenauer, C.: Rational series and Their Languages. Springer, Berlin (1984)

    Google Scholar 

  5. Caines, P.E.: Linear Stochastic Systems. Wiley, New York (1998)

    Google Scholar 

  6. Callier, F.M., Desoer, C.A.: Linear System Theory. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Celle, F., Gauthier, J.P.: Realizations of nonlinear analytic input-output maps. Math. Syst. Theory 19, 227–237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Desai, U.B.: Realization of bilinear stochastic systems. IEEE Trans. Autom. Control 31(2), 189–192 (1986)

    Article  Google Scholar 

  9. Eilenberg, S.: Automata Languages and Machines. Academic Press, New York (1974)

    MATH  Google Scholar 

  10. Frazho, A.E.: On stochastic bilinear systems. Modelling and Application of Stochastic Processes, pp. 215–241. Kluwer Academic, Boston (1986)

    Chapter  Google Scholar 

  11. Gauthier, J.-P.A.: Observability (deterministic systems) and realization theory. In: Meyers, R.A. (ed.) Mathematics of Complexity and Dynamical Systems, pp. 1195–1204. Springer, New York (2011)

    Google Scholar 

  12. Gécseg, F., Peák, I.: Algebraic Theory of Automata. Akadémiai Kiadó, Budapest (1972)

    Google Scholar 

  13. Grossman, R.L., Larson, R.G.: An algebraic approach to hybrid systems. Theoret. Comput. Sci. 138, 101–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isidori, A.: IEEE Trans. Autom. Control. Direct construction of minimal bilinear realizations from nonlinear input-output maps 18, 626–631 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Isidori, A.: Nonlinear Control Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  16. Isidori, A., D’Alessandro, P., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control 12(3), 517–535 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18(4), 455–471 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jakubczyk, B.: Construction of formal and analytic realizations of nonlinear systems. In: Isodori, A., Hinrichsen, D. (eds.) Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol. 39, pp. 147–156 (1982)

    Google Scholar 

  19. Jakubczyk, B.: Realizations of nonlinear systems: three approaches. In: Fliess, M., Hazewinkel, M. (eds.) Proceedings of the Conference on the Algebraic and Geometric Methods in Non-linear Control Theory, Paris, 1985, Reidel, Dordrecht (1986)

    Google Scholar 

  20. Kalman, R.E.: Advanced theory of linear systems. Topics in Mathematical System Theory, pp. 237–339. McGraw-Hill, New York (1969)

    Google Scholar 

  21. Kalman, R.E.: Introduction to the algebraic theory of linear dynamical systems. In: Mathematical Systems Theory and Economics, I, II (Proceedings of an International Summer School). Lecture Notes in Operations Research and Mathematical Economics, Vols. 11, 12, pp. 41–65, Springer, Berlin (1969)

    Google Scholar 

  22. Kamen, E.W., Hafez, K.M.: Algebraic theory of linear time-varying systems. SIAM J. Control Optim. 17(4), 500–510 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katayama, T.: Subspace Methods for System Identification. Springer, London (2005)

    Book  MATH  Google Scholar 

  24. Kuich, W., Salomaa, A.: Semirings, Automata Languages. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  25. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  26. Lindquist, A., Picci, G.: On the stochastic realization problem. SIAM J. Control Optim. 17(3), 365–389 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lindquist, A., Picci, G.: Realization theory for multivariate stationary gaussian processes. SIAM J. Control Optim. 23(6), 809–857 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olsder, G.: On the characteristic equation and minimal realizations for discrete-event dynamic systems. In: Bensoussan, A., Lions, J. (eds.) Analysis and Optimization of Systems. Lecture Notes in Control and Information Sciences, vol. 83, pp. 187–201. Springer, Berlin (1986). doi:10.1007/BFb0007557

    Chapter  Google Scholar 

  29. Paoletti, S., Roll, J., Garulli, A., Vicino, A.: Input/ouput realization of piecewise affine state space models. In: 46th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  30. Petreczky, M.: Realization theory for bilinear hybrid systems. In: 11th IEEE Conference on Methods and Models in Automation and Robotics (2005)

    Google Scholar 

  31. Petreczky, M.: Hybrid formal power series and their application to realization theory of hybrid systems. In: Proceedings of International Symposium on Mathematical Theory of Networks and Systems (2006)

    Google Scholar 

  32. Petreczky, M.: Realization theory for discrete-time piecewise-affine hybrid systems. In: Proceedings of International Symposium on Mathematical Theory of Networks and Systems (2006)

    Google Scholar 

  33. Petreczky, M.: Realization Theory of Hybrid Systems. Ph.D. thesis, Vrije Universiteit, Amsterdam (2006)

    Google Scholar 

  34. Petreczky, M.: Realization theory for linear switched systems: formal power series approach. Syst. Control Lett 56, 588–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Petreczky, M.: Realization theory of linear and bilinear switched systems: A formal power series approach: part i. ESAIM Control Optim. Calc. Var. 17, 410–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Petreczky, M.: Realization theory of linear and bilinear switched systems: a formal power series approach: part ii. ESAIM Control Optim. Calc. Var. 17, 446–471 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Petreczky, M., Bako, L.: On the notion of persistence of excitation for linear switched systems. In: 50th IEEE Conference on Decision and Control (CDC) (2011)

    Google Scholar 

  38. Petreczky, M., Bako, L., Lecouche, S.: Minimality and identifiability of sarx systems. In: 16th IFAC Symposium on System Identification (SYSID), Brussel (2012)

    Google Scholar 

  39. Petreczky, M., Bako, L., van Schuppen, J.H.: Realization theory for discrete-time linear switched systems. Automatica 49(11), 3337–3344 (2013)

    Article  MathSciNet  Google Scholar 

  40. Petreczky, M., Bako, L., van Schuppen, J.H.: Identifiability of discrete-time linear switched systems. In: Hybrid Systems: Computation and Control, pp. 141–150, ACM (2010)

    Google Scholar 

  41. Petreczky, M., Peeters, R.: Spaces of nonlinear and hybrid systems representable by recognizable formal power series. In Proceedings of MTNS2010, pp. 1051–1058 (2010)

    Google Scholar 

  42. Petreczky, M., Pommet, J.-B.: Realization theory of nonlinear hybrid systems. In: Taming Heterogenity and Complexity of Embedded Control (CTS-HYCON Workshop on Embedded and Hybrid Control). International Scientific and Technical Encyclopedia (ISTE), London (2006)

    Google Scholar 

  43. Petreczky, M., van Schuppen, J.H.: Realization theory for linear hybrid systems, Part I: Existence of a realization. Technical report, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 2008. Available at https://sites.google.com/site/mihalypetreczky/

  44. Petreczky, M., van Schuppen, J.H.: Realization theory for linear hybrid systems, Part II: Span-reachability, observability and minimality. Technical report, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 2008. Available at https://sites.google.com/site/mihalypetreczky/

  45. Petreczky, M., van Schuppen, J.H.: Realization theory of discrete-time linear hybrid system. In: 15th IFAC Symposium on System Identification (2009)

    Google Scholar 

  46. Petreczky, M., Van Schuppen, J.H.: Partial-realization of linear switched systems: a formal power series approach. Automatica 47(10), 2177–2184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Petreczky, M., van Schuppen, J.H.: Realization theory for linear hybrid systems. IEEE Trans. Autom. Control 55, 2282–2297 (2010)

    Article  Google Scholar 

  48. Petreczky, M., Vidal, R.: Metrics and topology for nonlinear and hybrid systems. In: Hybrid Systems: Computation and Control, vol. 441, LNCS,Springer (2007)

    Google Scholar 

  49. Petreczky, M., Vidal, R.: Realization theory of stochastic jump-markov linear systems. In: Proceedings 46th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  50. Petreczky, M., Vidal, R.: Realization theory of discrete-time semi-algebraic hybrid systems. In: Hybrid Systems: Computation and Control (HSCC), vol. 4981, pp. 386–400, LNCS (2008)

    Google Scholar 

  51. Petreczky, M., Wisniewski, R., Leth, J.: Balanced truncation for linear switched systems. Nonlin. Anal. Hybrid Syst. 10, 4–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Petreczky, M., Wisniewski, R., Leth, R.: Balanced truncation for linear switched systems. Nonlin. Anal. Hybrid Syst. 10, 4–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. De Schutter, Bart, Blondel, Vincent, de Vries, Remco, De Moor, Bart: On the boolean minimal realization problem in the max-plus algebra. Syst. Control Lett. 35(2), 69–78 (1998)

    Article  MATH  Google Scholar 

  54. Sontag, E.D.: Polynomial Response Maps. Lecture Notes in Control and Information Sciences, vol. 13. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  55. Sontag, E.D.: Realization theory of discrete-time nonlinear systems: part I - the bounded case. IEEE Trans Circuits Syst. 26(4), 342–356 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sontag, E.D.: Realization and input/output relations: the analytic case. In: Proceedings of the 28th Conference on Decision and Control (1989)

    Google Scholar 

  57. Sun, Z., Ge, S.S.: Switched Linear systems : Control and Design. Springer, London (2005)

    Book  Google Scholar 

  58. Sussmann, H.J.: Single-input observability of continuous-time systems. Math. Syst. Theory 12(1), 371–393 (1978)

    Article  MathSciNet  Google Scholar 

  59. Tóth, R.: Identification and Modeling of Linear Parameter-Varying Systems. Lecture Notes in Control and Information Sciences, vol. 403. Springer, Germany (2010)

    Book  MATH  Google Scholar 

  60. van der Schaft, A.J.: On realization of nonlinear systems described by higher-order differential equations. Math. Syst. Theory 19(3), 239–275 (1987)

    MATH  Google Scholar 

  61. van der Schaft, A.J., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Springer, London (2000)

    Book  MATH  Google Scholar 

  62. Wang, Y., Sontag, E.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30, 1126–1149 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Weiland, S., Juloski, A.L., Vet, B.: On the equivalence of switched affine models and switched ARX models. In: 45th IEEE Conference on Decision and Control (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaly Petreczky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petreczky, M. (2015). Realization Theory of Linear Hybrid Systems. In: Djemai, M., Defoort, M. (eds) Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-10795-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10795-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10794-3

  • Online ISBN: 978-3-319-10795-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics