Skip to main content

Observer Design for Discrete-Time Switching Nonlinear Models

  • Chapter
  • First Online:
Hybrid Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 457))

Abstract

Switched systems are often described by continuous and discrete dynamics as well as their interactions. Although results are available for linear switching systems, for nonlinear switching models few results exist. In this chapter, we consider observer design for discrete-time switching nonlinear systems with a Takagi–Sugeno representation. For designing the observers, a switching nonquadratic Lyapunov function is used. Such Lyapunov functions have shown a real improvement of the design conditions for discrete-time Takagi–Sugeno models. The Lypunov function can be defined for each subsystem or just for the moments when switching takes place. In the first case the results are more general, but also more conservative. The second case represents a significant improvement for periodic models. Thanks to the Lyapunov function used, it is possible to design observers for some switching systems with unobservable subsystems. The developed conditions are formulated as linear or bilinear matrix inequalities. Their advantages and shortcomings are illustrated on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, computed values are truncated to two decimal places.

References

  1. Altafini, C.: The reachable set of a linear endogenous switching system. Syst. Control Lett. 47, 343–353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arzelier, D., Peaucelle, D., Farges, C.: Robust analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs. In: Proceedings of the 44th IEEE Conference on Decision and Control, Spain (2005)

    Google Scholar 

  3. Baglietto, M., Battistelli, G., Tesi, P.: Stabilization and tracking for switching linear systems under unknown switching sequences. Syst. Control Lett. 62, 11–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Battistelli, G.: On stabilization of switching linear systems. Automatica 49, 1162–1173 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bengea, S.C., DeCarlo, R.A.: Optimal control of switching systems. Automatica 41, 11–27 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Bittanti, S., Colaneri, P.: Invariant representations of discrete-time periodic systems. Automatica 36, 1777–1793 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchini, F., Miani, S., Savorgnan, C.: Stability results for linear parameter varying and switching systems. Automatica 43, 1817–1823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boukhobza, T., Hamelin, F.: Observability of switching structured linear systems with unknown input. A graph-theoretic approach. Automatica 47, 395–402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory (Studies in Applied Mathematics). Society for industrial and applied mathematics, Philadelphia, USA (1994)

    Google Scholar 

  10. Chauvin, J., Moulin, P., Corde, G., Petit, N., Rouchon, P.: Real-time nonlinear individual cylinder air-fuel ratio observer on a diesel engine test bench. Prague, Czech Republic, In: Preprints of the IFAC World Congress (2005)

    Google Scholar 

  11. Chen, Y.-J., Ohtake, H., Wang, W.-J., Wang, H.: Relaxed stabilisation criterion for discrete T-S fuzzy systems by minimum-type piecewise non-quadratic Lyapunov function. IET Control Theor. Appl. 6(12), 1918–1925 (2012)

    Google Scholar 

  12. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

    Article  MathSciNet  Google Scholar 

  13. De Santis, E.: On location observability notions for switching systems. Syst. Control Lett. 60, 807–814 (2011)

    Article  MATH  Google Scholar 

  14. Dehghan, M., Ong, C.-J.: Computations of mode-dependent dwell times for discrete-time switching system. Automatica 49, 1804–1808 (2013)

    Article  MathSciNet  Google Scholar 

  15. Ding, B., Sun, H., Yang, P.: Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno’s form. Automatica 42(3), 503–508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, J., Yang, G.: \(H_{\infty }\) controller synthesis via switched PDC scheme for discrete-time T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 17(3), 544–555 (2009)

    Article  MathSciNet  Google Scholar 

  17. Donkers, M., Heemels, W., van de Wouw, N., Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9), 2101–2115 (2011)

    Article  Google Scholar 

  18. Doo, J.C., Seung, S.L., PooGyeon, P.: Output-feedback control of discrete-time switching fuzzy system. In: Proceedings of the IEEE International Conference Fuzzy Systems, pp. 441–446. St. Luis, USA (2003)

    Google Scholar 

  19. Duan, C., Wu, F.: Switching control synthesis for discrete-time switched linear systems via modified Lyapunov-Metzler inequalities. In: Proceedings of the American Control Conference, pp. 3186–3191. Montreal, Canada (2012)

    Google Scholar 

  20. Fantuzzi, C., Rovatti, R.: On the approximation capabilities of the homogeneous Takagi-Sugeno model. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, pp. 1067–1072. USA, New Orleans (1996)

    Google Scholar 

  21. Farges, C., Peaucelle, D., Arzelier, D., Daafouz, J.: Robust \(H_2\) performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs. Syst. Control Lett. 56, 159–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farkas, M.: Periodic Motions. Springer, New York (1994)

    Book  MATH  Google Scholar 

  23. Feng, G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 11(5), 605–612 (2003)

    Article  Google Scholar 

  24. Feng, G.: \(H_{\infty }\) controller design of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(1), 283–292 (2004)

    Article  Google Scholar 

  25. Gaiani, G., Lovera, M., Colaneri, P., Celi, R.: Discrete-time analysis of HHC schemes for helicopter vibration attenuation. In: Proceedings of the IFAC Workshop on Periodic Control Systems, pp. 69–74. Yokohama, Japan (2004)

    Google Scholar 

  26. Guan, Y., Ji, Z., Zhang, L., Wang, L.: Decentralized stabilizability of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 62, 438–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form. Automatica 40(5), 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hauroigné, P., Riedinger, P., Iung, C.: Observer-based output-feedback of a multicellular converter: control Lyapunov function-sliding mode approach. In: Proceedings of the 51st Conference on Decision and Control, pp. 1727–1732. Maui, Hawaii, USA (2012)

    Google Scholar 

  29. Hetel, L., Kruszewski, A., Perruquetti, W., Richard, J.: Discrete-time switched systems, set-theoretic analysis and quasi-quadratic Lyapunov functions. In: Proceedings of the Mediterranean Conference on Control and Automation, pp. 1325–1330. Corfu, Greece (2011)

    Google Scholar 

  30. Ji, Z., Wang, L., Guo, X.: Design of switching sequences for controllability realization of switched linear systems. Automatica 43, 662–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jungers, M., Castelan, E.B., Tarbouriech, S., Daafouz, J.: Finite \(L_2\)-induced gain and \(\lambda \)-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations. Nonlinear Anal. Hybrid Syst. 5, 289–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kerkeni, H., Guerra, T.M., Lauber, J.: Individual exaust gas mass flow estimation using a periodic observer design. In: Preprints of the IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  33. Kim, S., Campbell, S.A., Liu, X.: Delay independent stability of linear switching systems with time delay. J. Math. Anal. Appl. 339, 785–801 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kruszewski, A., Guerra, T.M.: Stabilization of a class of nonlinear model with periodic parameters in the Takagi-Sugeno form. In: Proceedings of the IFAC Workshop Periodic Control Systems, pp. 1–6. Saint Petersburg, Russia (2007)

    Google Scholar 

  35. Kruszewski, A., Wang, R., Guerra, T.M.: Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach. IEEE Trans. Autom. Control 53(2), 606–611 (2008)

    Article  MathSciNet  Google Scholar 

  36. Lam, H.K., Leung, F.H.F., Lee, Y.S.: Design of a switching controller for nonlinear systems with unknown parameters based on a fuzzy logic approach. IEEE Trans. Syst., Man Cybern. Part B 34(2), 1068–1074 (2004)

    Article  Google Scholar 

  37. Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A switching controller for uncertain nonlinear systems. IEEE Control Syst. Mag. 22(1), 1–14 (2002)

    Article  Google Scholar 

  38. Langjord, H., Johansen, T., Hespanha, J.P.: Switched control of an electropneumatic clutch actuator using on/off valves. In: Proceedings of the American Control Conference, pp. 1513–1518. Seattle, Washington, USA (2008)

    Google Scholar 

  39. Lendek, Zs, Lauber, J., Guerra, T.M.: Periodic Lyapunov functions for periodic TS systems. Syst. Control Lett. 62(4), 303–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liao, H.-H., Widd, A., Ravi, N., Jungkunz, A.F., Kang, J.-M., Gerdes, J.C.: Control of recompression HCCI with a three region switching controller. Control Eng. Pract. 21(2), 135–145 (2013)

    Article  Google Scholar 

  41. Moustris, G.P., Tzafestas, S.G.: Switching fuzzy tracking control for mobile robots under curvature constraints. Control Eng. Pract. 19(1), 45–53 (2011)

    Article  Google Scholar 

  42. Nguyen, A., Lauber, J., Dambrine, M.: Robust \(H_{\infty }\) control design for switching uncertain system: Application for turbocharged gasoline air system control. In: Proceedings of the 51st Conference on Decision and Control, pp. 1–6. Maui, Hawaii, USA (2012a)

    Google Scholar 

  43. Nguyen, A., Lauber, J., Dambrine, M.: Switching fuzzy control of the air system of a turbocharged SI engine. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–6. Brisbane, Australia (2012b)

    Google Scholar 

  44. Nguyen, A., Lauber, J., Dambrine, M.: Multi-objective control design for turbocharged spark ignited air system: a switching Takagi-Sugeno model approach. In: Proceedings of the American Control Conference, pp. 1–6, Washington, DC, USA (2013)

    Google Scholar 

  45. Ohtake, H., Tanaka, K., Wang, H.: Fuzzy modeling via sector nonlinearity concept. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 1, pp. 127–132. Vancouver, Canada (2001)

    Google Scholar 

  46. Ohtake, H., Tanaka, K., Wang, H.O.: Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B 36(1), 13–23 (2006)

    Article  Google Scholar 

  47. Pasamontes, M., Álvarez, J., Guzmán, J., Lemos, J., Berenguel, M.: A switching control strategy applied to a solar collector field. Control Eng. Pract. 19(2), 135–145 (2011)

    Article  Google Scholar 

  48. Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. Delft University, The Netherlands (2005)

    Google Scholar 

  49. Skelton, R.E., Iwasaki, T., Grigoriadis, K.: A unified approach to linear control design. Taylor & Francis, London (1998)

    Google Scholar 

  50. Stefan, O., Codrean, A., Dragomir, T.: Stability analysis and control synthesis for a network control system using a nonlinear network transmission model—A switched system approach. In: Proceedings of the IEEE International Conference on Control Applications (CCA), pp. 885–890. Dubrovnik, Croatia (2012)

    Google Scholar 

  51. Stepan, G., Insperger, T.: Stability of time-periodic and delayed systems—a route to act and-wait control. Annu. Rev. Control 30, 159–168 (2006)

    Article  Google Scholar 

  52. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  53. Tanaka, K., Ikeda, T., Wang, H.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  54. Tanaka, K., Iwasaki, M., Wang, H.O.: Switching control of an R/C hovercraft: stabilization and smooth switching. IEEE Trans. Syst. Man Cybern. Part B 31(6), 853–863 (2001)

    Article  Google Scholar 

  55. Tanaka, K., Wang, H.: Fuzzy regulators and fuzzy observers: a linear matrix inequality approach. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, pp. 1315–1320. San Diego, CA, USA (1997)

    Google Scholar 

  56. Theron, A., Farges, C., Peaucelle, D., Arzelier, D.: Periodic \(H_2\) synthesis for spacecraft in elliptical orbits with atmospheric drag and perturbations. In: Proceedings of American Control Conference, New York, USA (2007)

    Google Scholar 

  57. Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  58. Venkataramanan, V., Chen, B.M., Lee, T.H., Guo, G.: A new approach to the design of mode switching control in hard disk drive servo systems. Control Eng. Prac. 10(9), 925–939 (2002)

    Article  Google Scholar 

  59. Wang, H., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  60. Widyotriatmo, A., Hong, K.-S.: Switching algorithm for robust configuration control of a wheeled vehicle. Control Eng. Prac. 20(3), 315–325 (2012)

    Article  Google Scholar 

  61. Zhao, J., Spong, M.: Hybrid control for global stabilization of the cart-pendulum system. Automatica 37(12), 1941–1951 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zwart, H., van Mourik, S., Keesman, K.: Switching control for a class of non-linear systems with an application to post-harvest food storage. Eur. J. Control 16(5), 567–573 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsófia Lendek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lendek, Z., Raica, P., Lauber, J., Guerra, T.M. (2015). Observer Design for Discrete-Time Switching Nonlinear Models. In: Djemai, M., Defoort, M. (eds) Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-10795-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10795-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10794-3

  • Online ISBN: 978-3-319-10795-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics