Skip to main content

Feed-Forward Control Designs

  • Chapter
  • First Online:
Modeling and Control for a Blended Wing Body Aircraft

Part of the book series: Advances in Industrial Control ((AIC))

  • 2300 Accesses

Abstract

In contrast to Chap. 6 on feedback control, this chapter is focused on feed-forward control design. These designs focus on either gust load or maneuver load alleviation, respectively. The first section presents a convex synthesis of a conceptual, triggered finite-impulse response (FIR) gust load alleviation system, while the second section develops a maneuver load alleviation system for lateral command response based on convex synthesis. The last section focuses on a full-information \(\fancyscript{H}_{\infty }\)-design for maneuver loads alleviation for the longitudinal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balas G, Chiang R, Packard A, Safonov M (2010) MATLAB robust control toolbox 3, user’s guide. MathWorks

    Google Scholar 

  2. Boyd S, Barratt C, Norman S (1990) Linear controller design: limits of performance via convex optimization. Proc IEEE 78:529–574

    Article  Google Scholar 

  3. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. vol 15 SIAM

    Google Scholar 

  4. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Cerone V, Milanese M, Regruto D (2007) Robust feedforward design for a two-degrees of freedom controller. Syst Control Lett 56:736–741

    Article  MathSciNet  MATH  Google Scholar 

  6. Dardenne I (1999) Développement de méthodologies pour la synthèse de lois de commande d’un avion de transport souple. PhD thesis, Ecole Natrionale Supérieure de l’Aéronautique et de l’Espace (SUPAERO), France, 1999. (English: Development of methodologies for control law synthesis for a flexible transport aircraft)

    Google Scholar 

  7. Ferreres G, Roos C (2005) Efficient convex design of robust feedforward controllers. In: Proceedings 44th IEEE conference on decision and control and European control conference, pp 6460–6465

    Google Scholar 

  8. Hoyle DJ, Hyde RA, Limebeer DJN (1991) An \({\fancyscript {H}}_{\infty }\) approach to two degree of freedom design. In: Proceedings of the 30th conference on decision and control, Brighton, England

    Google Scholar 

  9. Limebeer DJN, Kasenally EM, Perkins JD (1993) On the design of robust two degree of freedom controllers. Automatica 29(1):157–168

    Article  MathSciNet  MATH  Google Scholar 

  10. Prempain E, Bergeon B (1998) A multivariable two-degree-of-freedom control methodology. Automatica 34(12):1601–1606

    Article  MATH  Google Scholar 

  11. Prempain E, Postlethwaite I (2000) A new two-degree-of-freedom gain scheduling method applied to the Lynx MK7. J Syst Control Eng 214(1):299–311

    Google Scholar 

  12. Prempain E, Postlethwaite I (2001) Feedforward control: a full-information approach. Automatica 37:17–28

    Article  MathSciNet  MATH  Google Scholar 

  13. Prempain E, Postlethwaite I (2008) A feedforward control synthesis approach for LPV systems. In: Proceedings of the American control conference, pp 3589–3594

    Google Scholar 

  14. Rugh WJ, Shamma JS (2000) Survey paper: research on gain scheduling. Automatica 36:1401–1425

    Article  MathSciNet  MATH  Google Scholar 

  15. Schirrer A (2011) Efficient robust control design and optimization methods for flight control. PhD thesis, Vienna University of Technology

    Google Scholar 

  16. Schirrer A, Westermayer C, Hemedi M, Kozek M (2011) Multi-model convex design of a scheduled lateral feedforward control law for a large flexible BWB aircraft. In: Preprints of the 18th IFAC world congress, Milano, Italy, pp 2126–2131

    Google Scholar 

  17. Sima D (2001) LMI optimization in connection with quadratic and nonlinear functions. In: Proceedings of the 3rd Niconet workshop on numerical software in control and engineering, Belgium, pp 91–96

    Google Scholar 

  18. Vidyasagar M (1987) Control system synthesis: a factorization approach. MIT Press, Cambridge

    Google Scholar 

  19. Westermayer C (2011) 2DOF parameter-dependent longitudinal control of a blended wing body flexible aircraft. PhD thesis, Vienna University of Technology

    Google Scholar 

  20. Westermayer C, Schirrer A, Hemedi M, Kozek M (2011) An \({\fancyscript {H}}_{\infty }\) full information appoach for the feedforward controller design of a large BWB flexible aircraft. In: Proceedings of the 4th EuCASS, St. Peterburg, Russia

    Google Scholar 

  21. Westermayer C, Schirrer A, Hemedi M, Kozek M (2013) An \({\fancyscript {H}}_{\infty }\) full information approach for the feedforward controller design of a large blended wing body flexible aircraft. In: Progress in flight dynamics, guidance, navigation, control, fault detection, and avionics, vol 6, EDP Sciences, pp 685–706

    Google Scholar 

  22. Wildschek A, Haniš T, Stroscher F (2013) \({\fancyscript {L}}_{\infty }\)-optimal feedforward gust load alleviation design for a large blended wing body airliner. In: Progress in flight dynamics, guidance, navigation, control, fault detection, and avionics, vol 6, EDP Sciences, pp 707–728

    Google Scholar 

  23. Youla D, Bongiorno J (1985) A feedback theory of two-degree-of-freedom optimal wiener-hopf design. IEEE Trans Autom Control 30:652–665

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schirrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haniš, T., Hromčík, M., Schirrer, A., Kozek, M., Westermayer, C. (2015). Feed-Forward Control Designs. In: Kozek, M., Schirrer, A. (eds) Modeling and Control for a Blended Wing Body Aircraft. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-10792-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10792-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10791-2

  • Online ISBN: 978-3-319-10792-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics