Skip to main content

Methods and Concepts

  • Chapter
  • First Online:
Book cover Bifurcation without Parameters

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2117))

  • 1735 Accesses

Abstract

Center manifolds facilitate the reduction of the dimension of a bifurcation problem to the necessary minimum. The local center manifold of an equilibrium, i.e. the bifurcation point, is a smooth manifold tangential to the center eigenspace of that equilibrium. The center eigenspace is the generalized eigenspace to all purely imaginary (or zero) eigenvalues of the linearization of the vector field at the equilibrium. The local center manifold contains all bounded solution in a small neighborhood, in particular all equilibria, all periodic orbits, and all connecting (heteroclinic) orbits of equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnol’d, V.: Dynamical systems V. Bifurcation theorie and catastrophe theory. Enc. Math. Sciences, vol. 5. Springer, Berlin (1994)

    Google Scholar 

  2. Dumortier, F., Roussarie, R.: Geometric singular perturbation theory beyond normal hyperbolicity. In: Jones, C.K.R.T. et al. (eds.) Multiple-Time-Scale Dynamical Systems. Proceedings of the IMA Workshop, Minneapolis, 1997–1998, IMA Vol. Math. Appl., vol. 122, pp. 29–63. Springer, New York (2001)

    Chapter  Google Scholar 

  3. Fiedler, B., Liebscher, S.: Takens-Bogdanov bifurcations without parameters, and oscillatory shock profiles. In: Broer, H., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, Festschrift dedicated to Floris Takens for his 60th birthday, pp. 211–259. IOP, Bristol (2001)

    Google Scholar 

  4. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lect. Notes Math., vol. 583. Springer, Berlin (1977)

    Google Scholar 

  5. Kosiuk, I., Szmolyan, P.: Scaling in singular perturbation problems: blowing up a relaxation oscillator. SIAM J. Appl. Dyn. Syst. 10(4), 1307–1343 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Murdock, J.: Normal forms and unfoldings for local dynamical systems. Monogr. in Math. Springer, New York (2003)

    Book  MATH  Google Scholar 

  7. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported 2, pp. 89–169. Teubner & Wiley, Stuttgart (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liebscher, S. (2015). Methods and Concepts. In: Bifurcation without Parameters. Lecture Notes in Mathematics, vol 2117. Springer, Cham. https://doi.org/10.1007/978-3-319-10777-6_2

Download citation

Publish with us

Policies and ethics