Skip to main content

Population Exploration on Genotype Networks in Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Abstract

Redundant genotype-to-phenotype mappings are pervasive in evolutionary computation. Such redundancy allows populations to expand in neutral genotypic regions where mutations to a genotype do not alter the phenotypic outcome. Genotype networks have been proposed as a useful framework to characterize the distribution of neutrality among genotypes and phenotypes. In this study, we examine a simple Genetic Programming model that has a finite and compact genotype space by characterizing its genotype networks. We study the topology of individual genotype networks underlying unique phenotypes, investigate the genotypic properties as vertices in genotype networks, and discuss the correlation of these network properties with robustness and evolvability. Using GP simulations of a population, we demonstrate how an evolutionary population diffuses on genotype networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenski, R.E., Barrick, J.E., Ofria, C.: Balancing robustness and evolvability. PLoS Biology 4(12), e428 (2006)

    Google Scholar 

  2. van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences 96(17), 9716–9720 (1999)

    Article  Google Scholar 

  3. Kirschner, M., Gerhart, J.: Evolvability. Proceedings of the National Academy of Sciences 95, 8420–8427 (1998)

    Article  Google Scholar 

  4. Pigliucci, M.: Is evolvability evolvable? Nature Review Genetics 9, 75–82 (2008)

    Article  Google Scholar 

  5. Wagner, A.: Robustness, evolvability, and neutrality. Federation of European Biochemical Societies Letters 579(8), 1772–1778 (2005)

    Article  Google Scholar 

  6. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends in Genetics 26, 406–414 (2010)

    Article  Google Scholar 

  7. Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010)

    Article  Google Scholar 

  8. Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic properties influcing the evolvability of gene expression. Science 317, 118–121 (2007)

    Article  Google Scholar 

  9. McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology 8, 231 (2008)

    Article  Google Scholar 

  10. de Visser, J.A.G.M., Hermission, J., Wagner, G.P., Meyers, L.A., Bagheri-Chaichian, H., et al.: Evolution and detection of genetic robustness. Evolution 57(9), 1959–1972 (2003)

    Google Scholar 

  11. Reidys, C., Stadler, P.F., Schuster, P.: Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bulletin of Mathematical Biology 59(2), 339–397 (1997)

    Article  MATH  Google Scholar 

  12. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in RNA secondary structures. Proceedings of The Royal Society B 255, 279–284 (1994)

    Article  Google Scholar 

  13. Wagner, A.: Robustness and evolvability: A paradox resolved. Proceedings of The Royal Society B 275(1630), 91–100 (2008)

    Article  Google Scholar 

  14. Ciliberti, S., Martin, O.C., Wagner, A.: Innovation and robustness in complex regulatory gene networks. Proceedings of the National Academy of Sciences 104(34), 13591–13596 (2007)

    Article  Google Scholar 

  15. Wilke, C.O.: Adaptive evolution on neutral networks. Bulletin of Mathematical Biology 63, 715–730 (2001)

    Article  Google Scholar 

  16. Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.: The ascent of the abundant: How mutational networks constrain evolution. PLoS Computational Biology 4(7), e1000110 (2008)

    Google Scholar 

  17. Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study in genetic programming. In: Davidor, Y., Schwefel, H.P., Manner, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  18. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evolutionary Computation 11(4), 381–415 (2003)

    Article  Google Scholar 

  19. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of recent developments in biology. Journal of Artificial Evolution and Applications 568375 (2010)

    Google Scholar 

  20. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156 (2006)

    Google Scholar 

  21. Hu, T., Banzhaf, W.: Neutrality and variability: Two sides of evolvability in linear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 963–970 (2009)

    Google Scholar 

  22. Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12, 17–34 (2006)

    Article  Google Scholar 

  23. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, pp. 207–221. Springer (2006)

    Google Scholar 

  24. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolvability. Complexity 7(2), 19–33 (2002)

    Article  MathSciNet  Google Scholar 

  25. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: A quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genetic Programming and Evolvable Machines 13, 305–337 (2012)

    Article  Google Scholar 

  26. Bavelas, A.: Communication patterns in task-oriented groups. Journal of the Acoustical Society of America 22, 725–730 (1950)

    Article  Google Scholar 

  27. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, T., Banzhaf, W., Moore, J.H. (2014). Population Exploration on Genotype Networks in Genetic Programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics