Advertisement

Synchronization and Control in Modular Networks of Spiking Neurons

  • Oleg V. MaslennikovEmail author
  • Dmitry V. Kasatkin
  • Vladimir I. Nekorkin
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

In this paper, we consider the dynamics of two types of modular neural networks. The first network consists of two modules of non-interacting neurons while each neuron inhibits all the neurons of an opposite module. We explain the mechanism for emergence of anti-phase group bursts in the network and showed that the collective behavior underlies a regular response of the system to external pulse stimulation. The networks of the second type contain modules with complex topology which are connected by relatively sparse excitatory delayed coupling. We found a dual role of the inter-module coupling delay in the collective network dynamics. First, with increasing time delay, in-phase and anti-phase regimes, where individual spikes form rhythmic modular burst-like oscillations, alternate with each other. Second, the average frequency of the collective oscillations in each of these regimes decreases with increasing inter-module coupling delay.

Keywords

Complex networks nonlinear dynamics neurodynamics synchronization delayed coupling maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)CrossRefGoogle Scholar
  3. 3.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Nekorkin, V.I., Vdovin, L.V.: Diskretnaya model neironnoy aktivnosti. Izvest. vys. ucheb. zaved. Prikladnaya Nelineinaya Dinamika 15, 36–60 (2007) (in Russian)Google Scholar
  5. 5.
    Courbage, M., Nekorkin, V.I., Vdovin, L.V.: Chaotic oscillations in a map-based model of neural activity. Chaos 17, 043109 (2007)Google Scholar
  6. 6.
    Courbage, M., Nekorkin, V.I.: Map-based models in neurodynamics. Int. J. Bifurcation and Chaos 20, 1631–1651 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Maslennikov, O.V., Kasatkin, D.V., Rulkov, N.F., Nekorkin, V.I.: Emergence of antiphase bursting in two populations of randomly spiking elements. Phys. Rev. E. 88, 042907 (2013)Google Scholar
  8. 8.
    Maslennikov, O.V., Nekorkin, V.I.: Modular networks with delayed coupling: Synchronization and frequency control. Phys. Rev. E. 90, 012901 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Oleg V. Maslennikov
    • 1
    Email author
  • Dmitry V. Kasatkin
    • 1
  • Vladimir I. Nekorkin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations