Advertisement

The Development of Chemical Artificial Intelligence Processing Fuzzy Logic

  • Pier Luigi GentiliEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

The Human Nervous System is an outstanding example of natural complex system. Its hierarchical architecture and its basic nonlinear working principles store the secrets of Complexity. Of course, a scrutiny of the Human Nervous System is going to have a profound impact on the challenges to Complexity. In this contribution, we present the first results in our analysis of the human nervous system at the “computational”, “algorithmic” and “implementation” levels. Such analysis will probably bring to the development of a new generation of computing machines imitating the human intelligence that computes with words and solves quite easily computational problems like the recognition of variable patterns.

Keywords

Complexity Fuzzy Information Bayes theory Chromogenic materials Bistable reactions Belousov-Zhabotinsky reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TOP500 Project, http://www.top500.org
  2. 2.
    de Castro, L.N.: Fundamentals of natural computing: an overview. Phys. of Life Rev. 4, 1–36 (2007)CrossRefGoogle Scholar
  3. 3.
    Gallistel, C.R., King, A.: Memory and the computational brain: Why cognitive science will transform neuroscience. Blackwell/Wiley, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Marr, D.: Vision. A Computational Investigation into the Human Representation and Processing of Visual Information. The MIT Press (2010)Google Scholar
  5. 5.
    Gentili, P.L.: Small Steps towards the Development of Chemical Artificial Intelligent Systems. RSC Adv. 3, 25523–25549 (2013)CrossRefGoogle Scholar
  6. 6.
    Gentili, P.L.: The Human Sensory System as a collection of specialized Fuzzifiers: a conceptual framework to inspire new Artificial Intelligent Systems computing with words. J. Intel. & Fuzzy Sys. (2014), doi:10.3233/IFS-141179Google Scholar
  7. 7.
    Zadeh, L.A.: A New Direction in AI. AI Magazine 22, 73–84 (2001)Google Scholar
  8. 8.
    Paxinos, G., Mai, J.K.: The Human Nervous System, 2nd edn. Elsevier (2004)Google Scholar
  9. 9.
    Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar
  10. 10.
    Van Horn, K.S.: Constructing a logic of plausible inference: a guide to Cox’s theorem. Int. J. Approx. Reason. 34, 3–24 (2003)CrossRefGoogle Scholar
  11. 11.
    De Finetti, B., Machi, A., Smith, A.: Theory of Probability: a Critical Introductory Treatment. Wiley, New York (1993)Google Scholar
  12. 12.
    Mach, E.: Contributions to the Analysis of the Sensations (C. M. Williams, Trans.). Open Court Publishing Co., Chicago (1980)Google Scholar
  13. 13.
    Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neur. 27(12), 712–719 (2004)CrossRefGoogle Scholar
  14. 14.
    Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets and Systems 144(1), 227–249 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kersten, D., Mamassian, P., Yuille, A.: Object Perception as Bayesian Inference. Annu. Rev. Psychol. 55, 271–304 (2004)CrossRefGoogle Scholar
  16. 16.
    Kåhre, J.: The Mathematical Theory of Information. Kluwer Academic Publishers, Norwell (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stein, B.E., Meredith, M.A.: The merging of the senses. MIT Press, Cambridge (1993)Google Scholar
  18. 18.
    Driver, J., Spense, C.: Multisensory perception: beyond modularity and convergence. Curr. Biol. 10, R731–R735 (2000)Google Scholar
  19. 19.
    Gentili, P.L.: The fuzziness of a chromogenic spirooxazine. Dyes and Pigments 110, 235–248 (2014)CrossRefGoogle Scholar
  20. 20.
    Gentili, P.L.: The fundamental Fuzzy logic operators and some complex Boolean logic circuits implemented by the chromogenism of a spirooxazine. Phys. Chem. Chem. Phys. 13, 20335–20344 (2011)CrossRefGoogle Scholar
  21. 21.
    Gentili, P.L.: Molecular Processors: From Qubits to Fuzzy Logic. ChemPhysChem. 12, 739–745 (2011)CrossRefGoogle Scholar
  22. 22.
    Gentili, P.L., Ortica, F., Favaro, G.: Supramolecular interaction of a spirooxazine with amino acids. Chem. Phys. Lett. 444, 135–139 (2007)CrossRefGoogle Scholar
  23. 23.
    Al-sharhan, S., Karray, F., Gueaieb, W., Basir, O.: Fuzzy entropy: a brief survey. In: IEEE International Fuzzy Systems Conference, pp. 1135–1139 (2001)Google Scholar
  24. 24.
    Gentili, P.L., Horvath, V., Vanag, V.K., Epstein, I.R.: Belousov-Zhabotinsky “chemical neuron” as a binary and fuzzy logic processor. Int. Journ. of Unconventional Computing 8, 177–192 (2012)Google Scholar
  25. 25.
    Horvath, V., Gentili, P.L., Vanag, V.K., Epstein, I.R.: Pulse-Coupled Chemical Os-cillators with Time Delay. Angew. Chem. Int. Ed. 51, 6878–6881 (2012)CrossRefGoogle Scholar
  26. 26.
    Rabinovich, M.I., Varona, P., Selverston, A.I., Abardanel, H.D.I.: Dynamical Principles in Neuroscience. Rev. Mod. Phys. 78, 1213–1265 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly

Personalised recommendations