Advertisement

Modeling of Tumour Growth Induced by Circadian Rhythm Disruption in Epithelial Tissue

  • Dmitry BratsunEmail author
  • Andrey Zakharov
  • Len Pismen
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

We propose a multiscale model of cancer tumour growth in a quasi epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue via mechanisms of division and intercalation of cells. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. It is assumed also that cancer cells can arise from local failure of a spatial synchronization of circadian rhythms. We hope that the subsequent study of the dynamic properties of the model could determine the relationship between the occurrence of the cancer cells and development of the entire tissue coordinating its evolution through the exchange of chemical and mechanical signals.

Keywords

cancer modeling circadian rhythms gene regulation signaling time-delay complexity in biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weber, G.F.: Molecular Mechanisms of Cancer. Springer (2007)Google Scholar
  2. 2.
    Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Mathematical Models and Methods in Applied Sciences 18, 593–646 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Gyllenberg, M., Webb, G.: A nonlinear structured population model of tumour growth with quiescence. J. Math. Biol. 28, 671–684 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Kimmel, M., Lachowicz, M., Świerniak, A.: Cancer growth and progression, mathematical problems and computer simulations. Int. J. Appl. Math. Comput. Sci. 13, 279–429 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dyson, J., Villella-Bressan, R., Webb, G.: The steady state of a maturity structured tumor cord cell population. Discr. Cont. Dyn. Syst. B 4, 115–134 (2004)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumour growth. Math. Mod. Meth. Appl. Sci. 12, 737–754 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Smolle, J., Stettner, H.: Computer simulation of tumour cell invasion by a stochastic growth model. J. Math. Biol. 160, 63–72 (1993)Google Scholar
  8. 8.
    Anderson, A.: A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004)CrossRefGoogle Scholar
  10. 10.
    Komarova, N.: Stochastic modeling of loss- and gain-of-function mutation in cancer. Math. Mod. Meth. Appl. Sci. 17, 1647–1674 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Alarcon, T.: A cellular automaton model for tumour growth in inhomogenous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kim, Y., Stolarska, M.A., Othmer, H.G.: A hybrid model for tumour spheroid growth in vitro I: Theoretical development and early results. Math. Mod. Meth. Appl. Sci. 17, 1773–1798 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zakharov, A., Bratsun, D.: Synchronization of Circadian Rhythms at Scale of Gene, Cell and Whole Organism. In: Sanayei, A., Zelinka, I., Rossler, O.E. (eds.) ISCS 2013. Emergence, Complexity and Computation, vol. 8, pp. 345–355. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Viktorinová, I., Pismen, L.M., Aigouy, B., Dahmann, C.: Modelling planar polarity of epithelia: The role of signal relay in collective cell polarization. J. R. Soc. Interface 8, 1059–1063 (2011)CrossRefGoogle Scholar
  15. 15.
    Salm, M., Pismen, L.M.: Chemical and mechanical signaling in epithelial spreading. Phys. Biol. 9, 026009–026023 (2012)Google Scholar
  16. 16.
    Greene, M.W.: Circadian rhythms and tumor growth. Cancer Letters 318, 115–123 (2012)CrossRefGoogle Scholar
  17. 17.
    Rossetti, S., Esposito, J., Corlazzoli, F., Gregorski, A., Sacchi, N.: Entrainment of breast (cancer) epithelial cells detects distinct circadian oscillation patterns for clock and hormone receptor genes. Cell Cycle 11, 350–360 (2012)CrossRefGoogle Scholar
  18. 18.
    Bratsun, D., Zakharov, A.: Deterministic modeling spatio-temporal dynamics of delay-induced circadian oscillations in Neurospora crassa. In: Sanayei, A., Zelinka, I., Rossler, O.E. (eds.) ISCS 2013. Emergence, Complexity and Computation, vol. 8, pp. 179–189. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Nikolic, D.L., Boettiger, A.N., Bar-Sagi, D., Carbeck, J.D., Shvartsman, S.Y.: Role of boundary conditions in an experimental model of epithelial wound healing. Am. J. Physiol. Cell Physiol. 291, 68–75 (2006)CrossRefGoogle Scholar
  20. 20.
    Bratsun, D., Volfson, D., Hasty, J., Tsimring, L.S.: Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102, 14593–14598 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentPerm State Humanitarian Pedagogical UniversityPermRussia
  2. 2.Department of Chemical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations