Modeling and Optimization of Microalgae Growth in Photobioreactors: A Multidisciplinary Problem

  • Štěpán PapáčekEmail author
  • Jiři Jablonsḱ Jablonský
  • Karel Petera
  • Branislav Rehák
  • Ctirad Matonoha
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


Microalgae have the potential to be a major biofuel source in the future. Computational biology plays a key role in understanding biological processes within microalgae and optimizing biofuel production. Here, we present a multidisciplinary, multi-timescale modeling approach of microalgae growth in photobioreactors. Our modeling framework bridges biology (cell growth), physics (hydrodynamics and light distribution), and optimization together. This framework consists of (i) the state system (mass balance equations in form of advection-diffusion-reaction PDEs), (ii) the fluid flow equations (the Navier-Stokes equations), and (iii) the optimization problem formulation. The modeling and optimization of microalgae growth in a Couette-Taylor reactor is presented to demonstrate this method. We show how the flashing light effect can be an intrinsic part of the model. Finally, we discuss further methodological integration with the metabolomic-transcriptomic kinetic model, which explains cellular concentrations of key metabolites in connection with cell growth.


Microalgae photobioreactor optimization multiscale modeling flashing light effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schugerl, K., Bellgardt, K.: Bioreaction Engineering, Modeling and Control. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Alvarez-Vázquez, L., Fernández, F.: Optimal control of bioreactor. Applied Mathematics and Computation 216, 2559–2575 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Muller-Feuga, A., Guédes, R.L., Pruvost, J.: Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. Journal of Biotechnology 103, 153–163 (2003)CrossRefGoogle Scholar
  4. 4.
    Succi, S.: The Lattice Boltzmann equation. Oxford University Press (2001)Google Scholar
  5. 5.
    Štumbauer, V., Petera, K., Štys, D.: The lattice Boltzmann method in bioreactor design and simulation. Mathematical and Computer Modelling 57, 1913–1918 (2013)CrossRefGoogle Scholar
  6. 6.
    Rehák, B., Čelikovský, S., Papáček, Š.: Model for photosynthesis and photoinhibition: Parameter identification based on the harmonic irradiation O 2 response measurement. Joint Special Issue of TAC IEEE and TCAS IEEE, 101–108 (2008)Google Scholar
  7. 7.
    Taylor, G.I.: Stability of a viscous liquid containing between two rotating cylinders. Phil. Trans. Royal Society 223, 289–343 (1923)CrossRefzbMATHGoogle Scholar
  8. 8.
    Papáček, Š., Štumbauer, V., Štys, D., Petera, K., Matonoha, C.: Growth impact of hydrodynamic dispersion in a couette-taylor bioreactor. Mathematical and Computer Modelling 54, 1791–1795 (2011)CrossRefGoogle Scholar
  9. 9.
    Eilers, P., Peeters, J.: Dynamic behaviour of a model for photosynthesis and photoinhibition. Ecological Modelling 69, 113–133 (1993)CrossRefGoogle Scholar
  10. 10.
    Terry, K.L.: Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnology and Bioengineering 28, 988–995 (1986)CrossRefGoogle Scholar
  11. 11.
    Nedbal, L., Tichý, V., Xiong, F., Grobbelaar, J.: Microscopic green algae and cyanobacteria in high-frequency intermittent light. J. Appl. Phycol. 8, 325–333 (1996)CrossRefGoogle Scholar
  12. 12.
    Papáček, Š., Čelikovský, S., Štys, D., Ruiz-León, J.: Bilinear system as modelling framework for analysis of microalgal growth. Kybernetika 43, 1–20 (2007)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Wu, X., Merchuk, J.: A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chemical Engineering Science 56, 3527–3538 (2001)CrossRefGoogle Scholar
  14. 14.
    Jablonský, J., Hagemann, M., Schwarz, D., Wolkenhauer, O.: Phosphoglycerate mutases function as reverse regulated isoenzymes in synechococcus elongatus pcc 7942. PLOS One 8, e58281 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Štěpán Papáček
    • 1
    Email author
  • Jiři Jablonsḱ Jablonský
    • 1
  • Karel Petera
    • 2
  • Branislav Rehák
    • 3
  • Ctirad Matonoha
    • 4
  1. 1.University of South Bohemia in Ceske Budejovice, FFPW USB, CENAKVAInstitute of Complex SystemsNové HradyCzech Republic
  2. 2.Faculty of Mechanical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  3. 3.Institute of Information Theory and AutomationAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations