Advertisement

Multifractality in Imaging: Application of Information Entropy for Observation of Inner Dynamics Inside of an Unlabeled Living Cell in Bright-Field Microscopy

  • Renata RychtarikovaEmail author
  • Tomas Nahlik
  • Rebecca Smaha
  • Jan Urban
  • Dalibor StysJr.
  • Petr Cisar
  • Dalibor Stys
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

The theoretical background of bright field optical microscopy is not described to the extent that would allow the extraction of as many features of the original object from the image as possible. In this article, we present the determination of image features based on a general assumption that images transmitted by an optical microscope have multifractal character. In order to determine the borders of the determinable point spread function, we derived a Point Divergence Gain (PDG α,x(l),y(l)) variable from the Renyi entropy. This variable calculates image points that carry the same information in consequent images captured upon moving the object along the lens’ optical axis (z-scan). In this way, we may precisely identify the border of the point spread function of immovable identifiable objects.

Keywords

Renyi entropy multifractality point spread function bright-field microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braat, J.J.M., Dirksen, P., Janssen, A.J.E.M.: Assessment of an Extended Nijboer-Zernike Approach for the Computation of Optical Point-Spread Functions. J. Opt. Soc. Am. A 19, 858–870 (2002)CrossRefGoogle Scholar
  2. 2.
    Stys, D., Urban, J., Vanek, J., Cisar, P.: Analysis of Biological Time-Lapse Microscopic Experiment from the Point of View of the Information Theory. Micron 42, 360–365 (2011)CrossRefGoogle Scholar
  3. 3.
    Štys, D., Jizba, P., Papáček, Š., Náhlík, T., Císař, P.: On Measurement of Internal Variables of Complex Self-Organized Systems and Their Relation to Multifractal Spectra. In: Kuipers, F.A., Heegaard, P.E. (eds.) IWSOS 2012. LNCS, vol. 7166, pp. 36–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Tkacik, G., Garrigan, P., Ratliff, C., Milcinski, G., Klein, J.M., Seyfarth, L.H., Sterling, P., Brainard, D.H., Balasubramanian, V.: Natural Images from the Birthplace of the Human Eye. PLoS One 6(6), e20409 (2011)Google Scholar
  5. 5.
  6. 6.
    Abbe, E.: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9(1), 469–480 (1874)CrossRefGoogle Scholar
  7. 7.
    Lichtscheidel, I.K., Foissner, I.: Video Microscopy of Dynamic Plant Cell Organelles: Principles of the Technique and Practical Application. J. Microsc.-Oxford 181, 117–128 (1996)CrossRefGoogle Scholar
  8. 8.
    Zernike, F.: The Concept of Degree of Coherence and Its Application to Optical Problems. Physica 5, 785–795 (1938)CrossRefGoogle Scholar
  9. 9.
    Nijboer, B.R.A.: The Diffraction Theory of Aberrations. Ph.D. dissertation, University of Groningen, Groningen, The Netherlands (1942)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Renata Rychtarikova
    • 1
    Email author
  • Tomas Nahlik
    • 1
  • Rebecca Smaha
    • 2
  • Jan Urban
    • 1
  • Dalibor StysJr.
    • 3
  • Petr Cisar
    • 1
  • Dalibor Stys
    • 1
  1. 1.Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, FFPWUniversity of South Bohemia in Ceske BudejoviceNove HradyCzech Republic
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Department of Measurement, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations