Advertisement

Does Evolutionary Dynamics Need Randomness, Complexity or Determinism?

  • Ivan ZelinkaEmail author
  • Roman Senkerik
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

Inherent part of evolutionary algorithms that are based on Darwin theory of evolution and Mendel theory of genetic heritage, are random processes. In our as well as another researcher papers is successfully discussed possibility to replace pseudorandom number generators by deterministic chaos generator, generating chaos, and then by n periodical series based on deterministic chaos generators and finally also fully deterministic periodical functions. In all cases was observed that pseudorandom generators can be successfully replaced by chaotic or deterministic generators and thus question whether evolutionary algorithms needs randomness, complexity or determinism and we propose novel way how to understand, analyze and control complex dynamics of evolutionary algorithms.

Keywords

Particle Swarm Optimization Evolutionary Algorithm Pseudorandom Number Pseudorandom Number Generator Pseudorandom Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z.: On the Behaviour and Performance of Chaos Driven PSO Algorithm with Inertia Weight. In: Computers and Mathematics with Applications (in print) ISSN 0898-1221Google Scholar
  2. 2.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 167–177. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Impact of Various Chaotic Maps on the Performance of Chaos Enhanced PSO Algorithm with Inertia Weight an Initial Study. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 153–166. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: PID Controller Design For 4th Order system By Means of Enhanced PSO algorithm With Lozi Chaotic Map. In: Proceedings of 18th International Conference on Soft Computing, MENDEL 2012, pp. 35–39 (2012) ISBN 978-80-214-4540-6Google Scholar
  5. 5.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: On The Performance of Enhanced PSO algorithm With Lozi Chaotic Map An Initial Study. In: Proceedings of 18th International Conference on Soft Computing, MENDEL 2012, pp. 40–45 (2012) ISBN 978-80-214-4540-6Google Scholar
  6. 6.
    Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos, Solitons and Fractals 45, 238–245 (2012)CrossRefGoogle Scholar
  7. 7.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers and Mathematics with Applications 60(4), 1088–1104 (2010) ISSN 0898-1221Google Scholar
  8. 8.
    Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Pluhacek, M.: Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 93–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Lozi, R.: Emergence Of Randomness From Chaos. International Journal of Bifurcation and Chaos 22(2), 1250021 (2012), doi:10.1142/S0218127412500216CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wang, X.-Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, Nonlinear Dyn. 70(2), 1589–1592 (2012), doi:10.1007/s11071-012-0558-0MathSciNetGoogle Scholar
  11. 11.
    Pareek, N.K., Patidar, V., Sud, K.K.: A Random Bit Generator Using Chaotic Maps. International Journal of Network Security 10(1), 32–38 (2010)Google Scholar
  12. 12.
    Xing-Yuan, W., Lei, Y.: Design of Pseudo-Random Bit Generator Based on Chaotic Maps. International Journal of Modern Physics B 26(32), 1250208, 9 (2012), doi:10.1142/S0217979212502086Google Scholar
  13. 13.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)Google Scholar
  15. 15.
    Glover, F., Laguna, M., Mart, R.: Scatter Search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation: Theory and Applications, pp. 519–537. Springer, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Beyer, H.G.: Theory of Evolution Strategies. Springer, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Holland, J.H.: Genetic Algorithms. Scientific American, 44–50 (July 1992)Google Scholar
  18. 18.
    Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006) ISBN 1905209045Google Scholar
  19. 19.
    Zelinka, I., Senkerik, R., Pluhacek, M.: Do Evolutionary Algorithms Indeed Require Randomness? In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2283–2289 (2013)Google Scholar
  20. 20.
    Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J.: Hidden Periodicity - Chaos Dependance on Numerical Precision. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 47–59. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J.: Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 61–75. Springer, Heidelberg (2013)Google Scholar
  22. 22.
    Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons and Fractals 40(4), 1715–1734 (2009) ISSN 0960-0779Google Scholar
  23. 23.
    Eberhart, R., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann (2001)Google Scholar
  24. 24.
    Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.): ANTS 2006. LNCS, vol. 4150. Springer, Heidelberg (2006)Google Scholar
  25. 25.
    Skanderova, L., Zelinka, I., Šaloun, P.: Chaos Powered Selected Evolutionary Algorithms. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 111–124. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Franois, M., Grosges, T., Barchiesi, T., Erra, D., Pseudo-random, R.: number generator based on mixing of three chaotic maps. Commun Nonlinear Sci. Numer. Simulat. 19, 887–895 (2014)CrossRefGoogle Scholar
  27. 27.
    Vattulainena, I., Kankaalaa, K., Saarinena, J., Ala-Nissila, T.: A comparative study of some pseudorandom number generators. Computer Physics Communications 86(3), 209–226 (1995)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generations. Chaos, Solitons and Fractals 40(5), 2557–2568 (2009)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Hellekalek, P.: A note on pseudorandom number generators, Simulation Practice and Theory. Simulation Practice and Theory 5(6), p6–p8 (1997)Google Scholar
  30. 30.
    Zelinka, I., Senkerik, R., Pluhacek, M.: Nonrandom Evolutionary Algorithms. In: Proceedings of 20th International Conference on Soft Computing, MENDEL 2014 (2014) ISBN 978-80- 214-4540-6Google Scholar
  31. 31.
    Zelinka, I., Saloun, P., Senkerik, R., Pavlech, M.: Controlling Complexity. In: Zelinka, I., Sanayei, A., Zenil, H., Rossler, O.E. (eds.) How Nature Works. Springer (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.VSB-Technical University of OstravaOstravaCzech Republic
  2. 2.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations