Skip to main content

Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback

  • Chapter
ISCS 2014: Interdisciplinary Symposium on Complex Systems

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 14))

Abstract

Hidden Markov Models are widely used in classical computer science to model stochastic processes with a wide range of applications. This paper concerns the quantum analogues of these machines — so-called Hidden Quantum Markov Models (HQMMs). Using the properties of Quantum Physics, HQMMs are able to generate more complex random output sequences than their classical counterparts, even when using the same number of internal states. They are therefore expected to find applications as quantum simulators of stochastic processes. Here, we emphasise that open quantum systems with instantaneous feedback are examples of HQMMs, thereby identifying a novel application of quantum feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norris, J.R.: Markov chains, Cambridge University Press (1998)

    Google Scholar 

  2. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257 (1989)

    Article  Google Scholar 

  3. Xue, H.: Hidden Markov Models Combining Discrete Symbols and Continuous Attributes in Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 458 (2006)

    Article  Google Scholar 

  4. Vanluyten, B., Willems, J.C., Moor, B.D.: Equivalence of State Representations for Hidden Markov Models. Systems and Control Letters 57, 410 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wiesner, K., Crutchfield, C.P.: Computation in finitary stochastic and quantum processes. Physica D 237, 1173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Monras, A., Beige, A., Wiesner, K.: Hidden Quantum Markov Models and non-adaptive read-out of many-body states. App. Math. and Comp. Sciences 3, 93 (2011)

    MATH  MathSciNet  Google Scholar 

  7. Gmeiner, P.: Equality conditions for internal entropies of certain classical and quantum models, arXiv:1108.5303 (2011)

    Google Scholar 

  8. O‘Neill, B., Barlow, T.M., Safranek, D., Beige, A.: Hidden Quantum Markov Models with one qubit. In: AIP Conf. Proc., vol. 1479, p. 667 (2012)

    Google Scholar 

  9. Sweke, R., Sinayskiy, I., Petruccione, F.: Simulation of Single-Qubit Open Quantum Systems, arXiv:1405.6049 (2014)

    Google Scholar 

  10. Kraus, K.: States, Effects and Operations. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983)

    MATH  Google Scholar 

  11. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press (2010)

    Google Scholar 

  12. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dalibard, J., Castin, Y., Molmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580 (1992)

    Article  Google Scholar 

  14. Hegerfeldt, G.C.: How to reset an atom after a photon detection. Applications to photon counting processes. Phys. Rev. A 47, 449 (1993)

    Article  Google Scholar 

  15. Carmichael, H.: An Open Systems Approach to Quantum Optics. Lecture Notes in Physics, vol. 18. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. Goldenfeld, N., Woese, C.: Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375 (2011)

    Article  Google Scholar 

  17. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network, arXiv:1404.0159 (2014)

    Google Scholar 

  18. Kiesslich, G., Emary, C., Schaller, G., Brandes, T.: Reverse quantum state engineering using electronic feedback loops. New. J. Phys. 14, 123036 (2012)

    Article  MathSciNet  Google Scholar 

  19. Emary, C.: Delayed feedback control in quantum transport. Phil. Trans. R. Soc. A 371, 1999 (2013)

    Article  MathSciNet  Google Scholar 

  20. Stokes, A., Kurcz, A., Spiller, T.P., Beige, A.: Extending the validity range of quantum optical master equations. Phys. Rev. A 85, 053805 (2012)

    Google Scholar 

  21. Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clark, L.A., Huang, W., Barlow, T.M., Beige, A. (2015). Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback. In: Sanayei, A., E. Rössler, O., Zelinka, I. (eds) ISCS 2014: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-10759-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10759-2_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10758-5

  • Online ISBN: 978-3-319-10759-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics