Advertisement

Desertification Transition in Semi-arid Ecosystems and Directed Percolation

  • Raffaele Corrado
  • Anna Maria Cherubini
  • Cecilia Pennetta
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

Regime shifts in ecosystems caused by climatic or anthropogenic factors can happen on a relatively short timescale with relevant economic and social effects, a consideration which motivates the large interest in the literature to this topic. A special case of regime shift is given by desertification transitions in semi-arid ecosystems. One desertification model, recently proposed, seems particularly effective in describing several ecological landscapes, taking into account different ecological mechanisms. This model simulates an ecosystem undergoing a desertification transition in term of a stochastic cellular automaton (SCA) subjected to a damage spreading (DS) transition. On the other hand, it is well known that many DS transitions belong to the directed percolation (DP) universality class under certain rather general conditions. Here we investigate the universality class of the SCA model and we identify the region of parameters space inside which it belongs to the DP class.

Keywords

Desertification Percolation in phase transitions Critical transitions Complex biological systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reynolds, J.F., Stafford Smith, D.M., Lambin, E.F., Turner II, B.L., Mortimore, M., Batterbury, S.P.J., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M., Walker, B.: Global desertification: building a science for dryland development. Science 316, 847–851 (2007)CrossRefGoogle Scholar
  2. 2.
    Rietkerk, M., Dekeer, S.C., de. Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)CrossRefGoogle Scholar
  3. 3.
    Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecology Lett. 9, 311–318 (2006)CrossRefGoogle Scholar
  4. 4.
    Dakos, V., Scheffer, M., van Nes, E.H., Brovkin, V., Petoukhov, V., Held, H.: Slowing down as an early warning signal for abroupt climate change. PNAS 105, 14308–14312 (2008)CrossRefGoogle Scholar
  5. 5.
    Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)CrossRefGoogle Scholar
  6. 6.
    Asner, G.P., Knapp, D.E., Balaji, A., Páez-Acosta, G.: Automated mapping of tropical deforestation and forest degration: CLASlite. J. of Appl. Remote Sensing 3, 033543-1–13 (2009)Google Scholar
  7. 7.
    Donangelo, R., Fort, H., Dakos, V., Scheffer, M., van Nes, E.H.: Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. of Bifurcation and Chaos 20, 315–321 (2010)CrossRefGoogle Scholar
  8. 8.
    Dakos, V., van Nes, E.H., Donangelo, R., Fort, H., Scheffer, M.: Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010)CrossRefGoogle Scholar
  9. 9.
    Dahlin, K.M., Asner, G.P., Field, C.B.: Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Procs. Nat. Ac. of Science 110, 6895–6900 (2013)CrossRefGoogle Scholar
  10. 10.
    Kéfi, S., Guttal, V., Brock, W.A., Carpenter, S.R., Ellison, A.M., Livina, V.N., Seekell, D.A., Scheffer, M., van Nes, E.H., Dakos, V.: Early warnings signals of ecological transitions: methods for spatial patterns. PLoS One 9, e41010 (2012)Google Scholar
  11. 11.
    von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101–198104 (2001)CrossRefGoogle Scholar
  12. 12.
    Rietkerk, M., Boerlijst, M.C., van Langvelde, F., HilleRis Lambers, R., van de Koppel, J., et al.: Self-organization of vegetation in arid ecosystems. American Naturalist 160, 524–530 (2002)CrossRefGoogle Scholar
  13. 13.
    Shnerb, N.M., Sarah, P., Lavee, H., Solomon, S.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90, 038101–1–4 (2003)Google Scholar
  14. 14.
    Kéfi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A., de Ruiter, P.C.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)CrossRefGoogle Scholar
  15. 15.
    Kéfi, S., Rietkerk, M., van Baalen, M., Loreau, M.: Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biolog 71, 367–379 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Scanlon, T.M., Caylor, K.K., Levin, S.A., Rodriguez-Iturbe, I.: Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007)CrossRefGoogle Scholar
  17. 17.
    Corrado, R., Cherubini, A.M., Pennetta, C.: Early warning signals of desertification transition in semi – arid ecosystems (submitted for publication)Google Scholar
  18. 18.
    Corrado, R., Cherubini, A.M., Pennetta, C.: Signals of Critical Transitions in Ecosystems Associated with Fluctuations of Spatial Patterns. In: 22nd Int. Conf. Noise and Fluctuations (ICNF), pp. 1–4. IEEE Press, New York (2013)CrossRefGoogle Scholar
  19. 19.
    Ilachinski, A.: Cellular Automata, a Discrete Universe. World Scientific, Singapore (2002)Google Scholar
  20. 20.
    Henkel, M., Hinrichsen, H., Lũbeck, S.: Non-Equilibrium Phase Transitions. Springer, Berlin (2008)zbMATHGoogle Scholar
  21. 21.
    Ódor, G.: Universality classes in nonequilibrium lattice systems. Review of Modern Physics 76, 663–724 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Phys. 49, 815–958 (2000)CrossRefGoogle Scholar
  23. 23.
    Grassberger, P.: Are damage spreading transitions generically in the universality class of directed percolation. Journ. Stat. Phys. 79, 13–23 (1995)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bagnoli, F.: On damage spreading transitions. Journal Stat. Phys. 85, 151–164 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Corrado, R., Cherubini, A.M., Pennetta, C.: Critical Desertification Transition in Semi-Arid Ecosystems: The Role of Local Facilitation and Colonization Rate (submitted for publication)Google Scholar
  26. 26.
    Munoz, M.A., Dickman, R., Vespignani, A., Zapperi, S.: Avalanche and spreading exponents in systems with absorbing states. Phys. Review E 59, 6175–6179 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Raffaele Corrado
    • 1
    • 2
  • Anna Maria Cherubini
    • 3
  • Cecilia Pennetta
    • 3
    • 4
  1. 1.PhD School on Climate Change SciencesUniversità del SalentoLecceItaly
  2. 2.CNRIstituto di Scienze dell’Atmosfera e del ClimaLecceItaly
  3. 3.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del SalentoLecceItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN)RomeItaly

Personalised recommendations