Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 14))

  • 1096 Accesses

Abstract

Since the origins of civilisation, computation methods adopted in various cultures could be roughly subdivided into two types.

One relied upon a system of notation, initially only for numbers, and rules of performing arithmetical operations on these notations. I will refer to this type as the linguistic one. Gradually it developed into algebra where generic or specific names could be ascribed to other mathematical objects, and then to operations on them as well.

Keynote talk at the 2014 Interdisciplinary Symposium on Complex Systems (ISCS’14), University of Florence, September 15–18, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: NP–complete problems and physical reality, 23. arXiv:quant–ph/0502072

    Google Scholar 

  2. Aaronson, S.: Why philosophers should care about computational complexity, 58. arXiv:1108.1791

    Google Scholar 

  3. Dehaene, S., Mehler, J.: Cross–linguistic regularities in the frequency of number words. Cognition 43, 1–29 (1992)

    Article  Google Scholar 

  4. Delahaye, J.–P.: Les entiers ne naissent pas égaux. Pour la Science (421), 80–85 (2012)

    Google Scholar 

  5. Huang, S.-M., Yen, D.C., Yang, L.-W., Hua, J.-S.: An investigation of Zipf’s Law for fraud detection. Decision Support Systems 46, 70–83 (2008)

    Article  Google Scholar 

  6. Levin, L.A.: Various measures of complexity for finite objects (axiomatic description). Soviet Math. Dokl. 17(2), 522–526 (1976)

    MATH  Google Scholar 

  7. Levin, L.A.: Randomness conservation inequalities: information and independence in mathematical theories. Information and Control 61, 15–37 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. Springer (1993)

    Google Scholar 

  9. Mandelbrot, B.: An information theory of the statistical structure of languages. In: Jackson, W. (ed.) Communication Theory, pp. 486–502. Butterworth, Woburn (1953)

    Google Scholar 

  10. Manin, D.Y.: Zipf’s Law and Avoidance of Excessive Synonymy. Cognitive Science 32(7), 1075–1078 (2008), arXiv:0710.0105

    Google Scholar 

  11. Manin, D.Y.: Mandelbrot’s model for Zipf’s Law. Can Mandelbrot’s model explain Zipf’s Law for language? Journ of Quantitative Linguistics 16(3), 274–285 (2009)

    Article  Google Scholar 

  12. Manin, Y.I.: A Course in Mathematical Logic for Mathematicians, 2nd edn. Graduate Texts in Mathematics. Springer (2010)

    Google Scholar 

  13. Manin, Y.I.: A computability challenge: Asymptotic bounds and isolated error-correcting codes. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 174–182. Springer, Heidelberg (2012)

    Google Scholar 

  14. Manin, Y.I.: Classical computing, quantum computing, and Shor’s factoring algorithm, Séminaire Bourbaki, no. 862, vol. 266, pp. 375–404. Astérisque (June 1999/2000), arXiv: quant-ph/9903008

    Google Scholar 

  15. Manin, Y.I.: Renormalization and computation I. Motivation and background. In: Loday, J., Vallette, B. (eds.) Proceedings OPERADS 2009. Séminaires et Congrès, vol. 26, pp. 181–223. Soc. Math. de France (2012), math.QA/0904.492

    Google Scholar 

  16. Manin, Y.I.: Renormalization and computation II: Time cut–off and the Halting Problem. Math. Struct. in Comp. Science 22, 729–751 (2012), Special issue, Cambridge UP. math.QA/0908.3430

    Google Scholar 

  17. Manin, Y.I.: Kolmogorov complexity as a hidden factor of scientific discourse: From Newton’s law to data mining. In: Talk at the Plenary Session of the Pontifical Academy of Sciences on Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects, Vatican, November 5–7 (2012) arXiv:1301.0081

    Google Scholar 

  18. Manin, Y.I.: Zipf’s law and L. Levin’s probability distributions. Functional Analysis and its Applications, Vol. 48(2) (2014), arXiv:1301.0427

    Google Scholar 

  19. Manin, Y., Marcoll, M.: Kolmogorov complexity and the asymptotic bound for error-correcting codes. Journ. of Diff. Geometry (to appear in 2014), arXiv:1203.0653

    Google Scholar 

  20. Manin, Y., Marcolli, M.: Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology. arXiv:1402.2158

    Google Scholar 

  21. Manin, Y., Marcolli, M.: Error–correcting codes and phase transitions. Math. in Comp. Science 5, 133–170 (2011), arXiv:mat.QA/0910.5135

    Google Scholar 

  22. Murtra, B.C., Solé, R.: On the Universality of Zipf’s Law. Phys. Rev. E 82 (2010)

    Google Scholar 

  23. Piantadosi, S.T.: Zipf’s word frequency law in natural language: A critical review and future directions, http://colala.bcs.rochester.edu/papers/piantadosi2014zipfs.pdf

  24. Smith, R.: Investigation of the Zipf–plot of the extinct Meroitic language. Glottometrics 15, 53–61 (2007)

    Google Scholar 

  25. Tversky, A., Kahneman, D.: Availability; A Heuristic for Judging Frequency and Probability. Cognitive Psychology 5, 207–232 (1973)

    Article  Google Scholar 

  26. Todd, L.: Veldhuizen. Software Libraries and Their Reuse: Entropy, Kolmogorov Complexity, and Zipf’s Law. arXiv:cs/0508023

    Google Scholar 

  27. Vladut, S.G., Nogin, D.Y., Tsfasman, M.A.: Algebraic geometric codes: Basic notions. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2007)

    Google Scholar 

  28. Zipf, G.K.: The psycho–biology of language. Routledge, London (1936)

    Google Scholar 

  29. Zipf, G.K.: Human behavior and the principle of least effort. Addison–Wesley (1949)

    Google Scholar 

  30. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms. Uspehi Mat. Nauk 25(6(156)), 8–127 (1970), (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manin, Y.I. (2015). Physics in the World of Ideas: Complexity as Energy. In: Sanayei, A., E. Rössler, O., Zelinka, I. (eds) ISCS 2014: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-10759-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10759-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10758-5

  • Online ISBN: 978-3-319-10759-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics