Advertisement

Physics in the World of Ideas: Complexity as Energy

  • Yuri I. Manin
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)

Abstract

Since the origins of civilisation, computation methods adopted in various cultures could be roughly subdivided into two types.

One relied upon a system of notation, initially only for numbers, and rules of performing arithmetical operations on these notations. I will refer to this type as the linguistic one. Gradually it developed into algebra where generic or specific names could be ascribed to other mathematical objects, and then to operations on them as well.

Keywords

Partition Function Turing Machine Linear Code Computable Function Kolmogorov Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    Aaronson, S.: NP–complete problems and physical reality, 23. arXiv:quant–ph/0502072Google Scholar
  2. [A2]
    Aaronson, S.: Why philosophers should care about computational complexity, 58. arXiv:1108.1791Google Scholar
  3. [DeMe]
    Dehaene, S., Mehler, J.: Cross–linguistic regularities in the frequency of number words. Cognition 43, 1–29 (1992)CrossRefGoogle Scholar
  4. [Del]
    Delahaye, J.–P.: Les entiers ne naissent pas égaux. Pour la Science (421), 80–85 (2012)Google Scholar
  5. [HuYeYaHua]
    Huang, S.-M., Yen, D.C., Yang, L.-W., Hua, J.-S.: An investigation of Zipf’s Law for fraud detection. Decision Support Systems 46, 70–83 (2008)CrossRefGoogle Scholar
  6. [Lev1]
    Levin, L.A.: Various measures of complexity for finite objects (axiomatic description). Soviet Math. Dokl. 17(2), 522–526 (1976)zbMATHGoogle Scholar
  7. [Lev2]
    Levin, L.A.: Randomness conservation inequalities: information and independence in mathematical theories. Information and Control 61, 15–37 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  8. [LiVi]
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. Springer (1993)Google Scholar
  9. [Mand]
    Mandelbrot, B.: An information theory of the statistical structure of languages. In: Jackson, W. (ed.) Communication Theory, pp. 486–502. Butterworth, Woburn (1953)Google Scholar
  10. [Ma1]
    Manin, D.Y.: Zipf’s Law and Avoidance of Excessive Synonymy. Cognitive Science 32(7), 1075–1078 (2008), arXiv:0710.0105Google Scholar
  11. [Ma2]
    Manin, D.Y.: Mandelbrot’s model for Zipf’s Law. Can Mandelbrot’s model explain Zipf’s Law for language? Journ of Quantitative Linguistics 16(3), 274–285 (2009)CrossRefGoogle Scholar
  12. [Man1]
    Manin, Y.I.: A Course in Mathematical Logic for Mathematicians, 2nd edn. Graduate Texts in Mathematics. Springer (2010)Google Scholar
  13. [Man2]
    Manin, Y.I.: A computability challenge: Asymptotic bounds and isolated error-correcting codes. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 174–182. Springer, Heidelberg (2012)Google Scholar
  14. [Man3]
    Manin, Y.I.: Classical computing, quantum computing, and Shor’s factoring algorithm, Séminaire Bourbaki, no. 862, vol. 266, pp. 375–404. Astérisque (June 1999/2000), arXiv: quant-ph/9903008Google Scholar
  15. [Man4]
    Manin, Y.I.: Renormalization and computation I. Motivation and background. In: Loday, J., Vallette, B. (eds.) Proceedings OPERADS 2009. Séminaires et Congrès, vol. 26, pp. 181–223. Soc. Math. de France (2012), math.QA/0904.492Google Scholar
  16. [Man5]
    Manin, Y.I.: Renormalization and computation II: Time cut–off and the Halting Problem. Math. Struct. in Comp. Science 22, 729–751 (2012), Special issue, Cambridge UP. math.QA/0908.3430Google Scholar
  17. [Man6]
    Manin, Y.I.: Kolmogorov complexity as a hidden factor of scientific discourse: From Newton’s law to data mining. In: Talk at the Plenary Session of the Pontifical Academy of Sciences on Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects, Vatican, November 5–7 (2012) arXiv:1301.0081Google Scholar
  18. [Man7]
    Manin, Y.I.: Zipf’s law and L. Levin’s probability distributions. Functional Analysis and its Applications, Vol. 48(2) (2014), arXiv:1301.0427Google Scholar
  19. [ManMar1]
    Manin, Y., Marcoll, M.: Kolmogorov complexity and the asymptotic bound for error-correcting codes. Journ. of Diff. Geometry (to appear in 2014), arXiv:1203.0653Google Scholar
  20. [ManMar2]
    Manin, Y., Marcolli, M.: Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology. arXiv:1402.2158Google Scholar
  21. [ManMar3]
    Manin, Y., Marcolli, M.: Error–correcting codes and phase transitions. Math. in Comp. Science 5, 133–170 (2011), arXiv:mat.QA/0910.5135Google Scholar
  22. [MurSo]
    Murtra, B.C., Solé, R.: On the Universality of Zipf’s Law. Phys. Rev. E 82 (2010)Google Scholar
  23. [Pi]
    Piantadosi, S.T.: Zipf’s word frequency law in natural language: A critical review and future directions, http://colala.bcs.rochester.edu/papers/piantadosi2014zipfs.pdf
  24. [Sm]
    Smith, R.: Investigation of the Zipf–plot of the extinct Meroitic language. Glottometrics 15, 53–61 (2007)Google Scholar
  25. [TvKa]
    Tversky, A., Kahneman, D.: Availability; A Heuristic for Judging Frequency and Probability. Cognitive Psychology 5, 207–232 (1973)CrossRefGoogle Scholar
  26. [Ve]
    Todd, L.: Veldhuizen. Software Libraries and Their Reuse: Entropy, Kolmogorov Complexity, and Zipf’s Law. arXiv:cs/0508023Google Scholar
  27. [VlaNoTsfa]
    Vladut, S.G., Nogin, D.Y., Tsfasman, M.A.: Algebraic geometric codes: Basic notions. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2007)Google Scholar
  28. [Zi1]
    Zipf, G.K.: The psycho–biology of language. Routledge, London (1936)Google Scholar
  29. [Zi2]
    Zipf, G.K.: Human behavior and the principle of least effort. Addison–Wesley (1949)Google Scholar
  30. [ZvLe]
    Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms. Uspehi Mat. Nauk 25(6(156)), 8–127 (1970), (Russian)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yuri I. Manin
    • 1
  1. 1.Max–Planck–Institut für MathematikBonnGermany

Personalised recommendations