Adsorption on Solid Surfaces

  • Hans Lüth
Part of the Graduate Texts in Physics book series (GTP)


The interaction of atoms and molecules with solid surfaces is discussed within the framework of physisorption and chemisorption. Hereby also the description of chemisorption processes in terms of multidimensional potential hypersurfaces obtained from density functional theory (DFT) is briefly presented. Work function changes induced by adsorption as well as two-dimensional phase transitions in adsorbate layers are explained. A whole section is devoted to the description of adsorption kinetics with emphasis on the phenomenology of adsorption, desorption and the corresponding isotherms. As important characterisation techniques Kelvin probe and photoemission measurements as well as desorption methods are discussed.


Work Function High Occupy Molecular Orbital Lower Unoccupied Molecular Orbital Desorption Rate Adsorbed Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


Chapter 10

  1. 10.1.
    J.N. Israelachvili, D. Tabor, Van der Waals forces: theory and experiment. Prog. Surf. Sci. 7, 1 (1973)Google Scholar
  2. 10.2.
    J.N. Israelachvili, Q. Rev. Biophys. 6, 341 (1974)CrossRefGoogle Scholar
  3. 10.3.
    E. Zaremba, W. Kohn, Phys. Rev. B 15, 1769 (1977)ADSCrossRefGoogle Scholar
  4. 10.4.
    T.B. Grimley, Theory of chemisorption, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, vol. 2, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1983), p. 333Google Scholar
  5. 10.5.
    E.W. Plummer, T.N. Rhodin, J. Chem. Phys. 49, 3479 (1968)ADSCrossRefGoogle Scholar
  6. 10.6.
    E. Bauer, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, vol. 3, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1984), p. 1Google Scholar
  7. 10.7.
    K.W. Kolasinski, Surface Science, Foundations of Catalysis and Nanoscience, 2nd edn. (Wiley, New York, 2008)Google Scholar
  8. 10.8.
    B. Hammer, M. Scheffler, K.W. Jacobsen, J.K. Norskov, Phys. Rev. Lett. 73, 1400 (1994)ADSCrossRefGoogle Scholar
  9. 10.9.
    G. Anger, A. Winkler, K.D. Rendulic, Surf. Sci. 220, 1 (1989)ADSCrossRefGoogle Scholar
  10. 10.10.
    C.T. Rettner, D.J. Auerbach, H.A. Michelson, Phys. Rev. Lett. 68, 2547 (1992)ADSCrossRefGoogle Scholar
  11. 10.11.
    E.P. Gyftopoulos, J.D. Levine, J. Appl. Phys. 33, 67 (1962)ADSCrossRefGoogle Scholar
  12. 10.12.
    J. Topping, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 114, 67 (1927)ADSCrossRefGoogle Scholar
  13. 10.13.
    A. Spitzer, H. Lüth, Surf. Sci. 120, 376 (1982)ADSCrossRefGoogle Scholar
  14. 10.14.
    M. Mattern-Klosson, Photoemissionsspektroskopie zur Untersuchung der Schottky-Barrieren von Sn and Sb auf GaAs(110), Dissertation (Aachen University of Technology)Google Scholar
  15. 10.15.
    M. Mattern-Klosson, H. Lüth, Solid State Commun. 56, 1001 (1985)ADSCrossRefGoogle Scholar
  16. 10.16.
    L.A. Bol’shov, A.P. Napartovich, A.G. Naumovets, A.G. Fedorus, Usp. Fiz. Nauk 122, 125 (1977). English transl.: Sov. Phys., Usp. 20, 432 (1977)ADSCrossRefGoogle Scholar
  17. 10.17.
    D.T. Pierce, F. Meier, Phys. Rev. B 13, 5484 (1977)ADSCrossRefGoogle Scholar
  18. 10.18.
    T.S. Rahman, D.L. Mills, J.E. Black, J.M. Szeftel, S. Lehwald, H. Ibach, Phys. Rev. B 30, 589 (1984)ADSCrossRefGoogle Scholar
  19. 10.19.
    R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1949)zbMATHGoogle Scholar
  20. 10.20.
    R.J. Behm, K. Christmann, G. Ertl, Solid State Commun. 25, 763 (1978)ADSCrossRefGoogle Scholar
  21. 10.21.
    A.R. Kortan, R.L. Park, Phys. Rev. B 23, 6340 (1981)ADSCrossRefGoogle Scholar
  22. 10.22.
    J.M. Thomas, W.J. Thomas, Introduction to the Principles of Heterogeneous Catalysis (Academic Press, New York, 1967)Google Scholar
  23. 10.23.
    D. Hayword, B. Trapnell, Chemisorption (Butterworths, London, 1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHPeter Grünberg Institut (PGI) PGI-9: Semiconductor NanoelectronicsJülichGermany
  2. 2.Jülich Aachen Research Alliance (JARA)AachenGermany

Personalised recommendations