A Hybrid Scheme for Two-Phase Flow
- 2k Downloads
Abstract
In this chapter, we investigate a two-phase flow generalization of the Euler equations. A symmetrized problem formulation that generalizes previous energy estimates in for the Euler equations is used for the stochastic Galerkin system. The solution is expected to develop non-smooth features that are localized in space. Consequently, we adapt the numerical method to the smoothness of the solution. Finite-difference operators in summation-by-parts (SBP) form are used for the high-order spatial discretization, and the HLL-flux and MUSCL reconstruction are employed for shock-capturing in the non-smooth region. The coupling between the different solution regions is performed with a weak imposition of the interface conditions through an interface using a penalty technique.
Keywords
Euler Equation Hybrid Scheme Deterministic Problem Stochastic Mode Stochastic CollocationReferences
- 1.Abbas Q, van der Weide E, Nordström J (2009) Accurate and stable calculations involving shocks using a new hybrid scheme. In: Proceedings of the 19th AIAA CFD conference, no. 2009–3985. Conference Proceeding Series. AIAA, San Antonio, TX.Google Scholar
- 2.Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:http://dx.doi.org/10.1006/jcph.1998.6114
- 3.Chen M, Keller AA, Lu Z, Zhang D, Zyvoloski G (2008) Uncertainty quantification for multiphase flow in random porous media using KL-based moment equation approaches. In: AGU spring meeting abstracts, p A2, Fort Lauderdale, FL.Google Scholar
- 4.Chen QY, Gottlieb D, Hesthaven JS (2005) Uncertainty analysis for the steady-state flows in a dual throat nozzle. J Comput Phys 204(1):378–398. doi:http://dx.doi.org/10.1016/j.jcp.2004.10.019
- 5.Deb MK, Babuška IM, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Math 190(48):6359–6372. doi: 10.1016/S0045-7825(01)00237-7, http://www.sciencedirect.com/science/article/pii/S0045782501002377
- 6.Debusschere BJ, Najm HN, Pébay PP, Knio OM, Ghanem RG, Le Maître OP (2005) Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J Sci Comput 26:698–719. doi:http://dx.doi.org/10.1137/S1064827503427741
- 7.Eriksson S, Abbas Q, Nordström J (2011) A stable and conservative method for locally adapting the design order of finite difference schemes. J Comput Phys 230(11):4216–4231. doi:http://dx.doi.org/10.1016/j.jcp.2010.11.020
- 8.Gerritsen M, Olsson P (1996) Designing an efficient solution strategy for fluid flows. J Comput Phys 129(2):245–262. doi: 10.1006/jcph.1996.0248, http://dx.doi.org/10.1006/jcph.1996.0248
- 9.Gottlieb S, Shu CW (1998) Total variation diminishing runge-kutta schemes. Math Comput 67:73–85CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Haas JF, Sturtevant B (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech 181:41–76. doi: 10.1017/S0022112087002003 CrossRefGoogle Scholar
- 11.Harten A (1983) On the symmetric form of systems of conservation laws with entropy. J Comput Phys 49(1):151–164. doi: 10.1016/0021-9991(83)90118-3, http://www.sciencedirect.com/science/article/pii/0021999183901183
- 12.Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61. http://www.jstor.org/stable/2030019
- 13.Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical aspects of finite elements in partial differential equations. Academic, New York, pp 179–183Google Scholar
- 14.Li H, Zhang D (2009) Efficient and accurate quantification of uncertainty for multiphase flow with the probabilistic collocation method. SPE J 14(4):665–679CrossRefGoogle Scholar
- 15.Mattsson K, Nordström J (2004) Summation by parts operators for finite difference approximations of second derivatives. J Comput Phys 199(2):503–540. doi: 10.1016/j.jcp.2004.03.001, http://dx.doi.org/10.1016/j.jcp.2004.03.001
- 16.Pettersson P, Iaccarino G, Nordström J (2009) Numerical analysis of the Burgers’ equation in the presence of uncertainty. J Comput Phys 228:8394–8412. doi: 10.1016/j.jcp.2009.08.012, http://dl.acm.org/citation.cfm?id=1621150.1621394
- 17.Pettersson P, Iaccarino G, Nordström J (2013) An intrusive hybrid method for discontinuous two-phase flow under uncertainty. Comput Fluids 86(0):228–239. doi:http://dx.doi.org/10.1016/j.compfluid.2013.07.009
- 18.Pettit CL, Beran PS (2006) Spectral and multiresolution Wiener expansions of oscillatory stochastic processes. J Sound Vib 294:752–779CrossRefGoogle Scholar
- 19.Schwab C, Tokareva SA (2011) High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. Tech Rep 2011–53, ETH, ZürichGoogle Scholar
- 20.So KK, Chantrasmi T, Hu XY, Witteveen JAS, Stemmer C, Iaccarino G, Adams NA (2010) Uncertainty analysis for shock-bubble interaction. In: Proceedings of the 2010 summer program. Center for Turbulence Research, Stanford UniversityGoogle Scholar
- 21.Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31. doi: 10.1016/0021-9991(78)90023-2, http://www.sciencedirect.com/science/article/pii/0021999178900232
- 22.Strand B (1994) Summation by parts for finite difference approximations for d/dx. J Comput Phys 110(1):47–67. doi:http://dx.doi.org/10.1006/jcph.1994.1005
- 23.van Leer B (1979) Towards the ultimate conservative difference scheme. V – a second-order sequel to Godunov’s method. J Comput Phys 32:101–136. doi: 10.1016/0021-9991(79)90145-1 CrossRefGoogle Scholar
- 24.Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644. doi:http://dx.doi.org/10.1137/S1064827501387826