A Hybrid Scheme for Two-Phase Flow

  • Mass Per Pettersson
  • Gianluca Iaccarino
  • Jan Nordström
Part of the Mathematical Engineering book series (MATHENGIN)


In this chapter, we investigate a two-phase flow generalization of the Euler equations. A symmetrized problem formulation that generalizes previous energy estimates in for the Euler equations is used for the stochastic Galerkin system. The solution is expected to develop non-smooth features that are localized in space. Consequently, we adapt the numerical method to the smoothness of the solution. Finite-difference operators in summation-by-parts (SBP) form are used for the high-order spatial discretization, and the HLL-flux and MUSCL reconstruction are employed for shock-capturing in the non-smooth region. The coupling between the different solution regions is performed with a weak imposition of the interface conditions through an interface using a penalty technique.


Euler Equation Hybrid Scheme Deterministic Problem Stochastic Mode Stochastic Collocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbas Q, van der Weide E, Nordström J (2009) Accurate and stable calculations involving shocks using a new hybrid scheme. In: Proceedings of the 19th AIAA CFD conference, no. 2009–3985. Conference Proceeding Series. AIAA, San Antonio, TX.Google Scholar
  2. 2.
    Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:
  3. 3.
    Chen M, Keller AA, Lu Z, Zhang D, Zyvoloski G (2008) Uncertainty quantification for multiphase flow in random porous media using KL-based moment equation approaches. In: AGU spring meeting abstracts, p A2, Fort Lauderdale, FL.Google Scholar
  4. 4.
    Chen QY, Gottlieb D, Hesthaven JS (2005) Uncertainty analysis for the steady-state flows in a dual throat nozzle. J Comput Phys 204(1):378–398. doi:
  5. 5.
    Deb MK, Babuška IM, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Math 190(48):6359–6372. doi: 10.1016/S0045-7825(01)00237-7,
  6. 6.
    Debusschere BJ, Najm HN, Pébay PP, Knio OM, Ghanem RG, Le Maître OP (2005) Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J Sci Comput 26:698–719. doi:
  7. 7.
    Eriksson S, Abbas Q, Nordström J (2011) A stable and conservative method for locally adapting the design order of finite difference schemes. J Comput Phys 230(11):4216–4231. doi:
  8. 8.
    Gerritsen M, Olsson P (1996) Designing an efficient solution strategy for fluid flows. J Comput Phys 129(2):245–262. doi: 10.1006/jcph.1996.0248,
  9. 9.
    Gottlieb S, Shu CW (1998) Total variation diminishing runge-kutta schemes. Math Comput 67:73–85CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Haas JF, Sturtevant B (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech 181:41–76. doi: 10.1017/S0022112087002003 CrossRefGoogle Scholar
  11. 11.
    Harten A (1983) On the symmetric form of systems of conservation laws with entropy. J Comput Phys 49(1):151–164. doi: 10.1016/0021-9991(83)90118-3,
  12. 12.
    Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61.
  13. 13.
    Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical aspects of finite elements in partial differential equations. Academic, New York, pp 179–183Google Scholar
  14. 14.
    Li H, Zhang D (2009) Efficient and accurate quantification of uncertainty for multiphase flow with the probabilistic collocation method. SPE J 14(4):665–679CrossRefGoogle Scholar
  15. 15.
    Mattsson K, Nordström J (2004) Summation by parts operators for finite difference approximations of second derivatives. J Comput Phys 199(2):503–540. doi: 10.1016/,
  16. 16.
    Pettersson P, Iaccarino G, Nordström J (2009) Numerical analysis of the Burgers’ equation in the presence of uncertainty. J Comput Phys 228:8394–8412. doi: 10.1016/,
  17. 17.
    Pettersson P, Iaccarino G, Nordström J (2013) An intrusive hybrid method for discontinuous two-phase flow under uncertainty. Comput Fluids 86(0):228–239. doi:
  18. 18.
    Pettit CL, Beran PS (2006) Spectral and multiresolution Wiener expansions of oscillatory stochastic processes. J Sound Vib 294:752–779CrossRefGoogle Scholar
  19. 19.
    Schwab C, Tokareva SA (2011) High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. Tech Rep 2011–53, ETH, ZürichGoogle Scholar
  20. 20.
    So KK, Chantrasmi T, Hu XY, Witteveen JAS, Stemmer C, Iaccarino G, Adams NA (2010) Uncertainty analysis for shock-bubble interaction. In: Proceedings of the 2010 summer program. Center for Turbulence Research, Stanford UniversityGoogle Scholar
  21. 21.
    Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31. doi: 10.1016/0021-9991(78)90023-2,
  22. 22.
    Strand B (1994) Summation by parts for finite difference approximations for d/dx. J Comput Phys 110(1):47–67. doi:
  23. 23.
    van Leer B (1979) Towards the ultimate conservative difference scheme. V – a second-order sequel to Godunov’s method. J Comput Phys 32:101–136. doi: 10.1016/0021-9991(79)90145-1 CrossRefGoogle Scholar
  24. 24.
    Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644. doi:

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mass Per Pettersson
    • 1
  • Gianluca Iaccarino
    • 2
  • Jan Nordström
    • 3
  1. 1.Uni ResearchBergenNorway
  2. 2.Department of Mechanical Engineering and Institute for Computational and Mathematical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Mathematics Computational MathematicsLinköping UniversityLinköpingSweden

Personalised recommendations