Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

In this chapter we review methods for formulating partial differential equations based on the random field representations outlined in Chap. 2 These include the stochastic Galerkin method, which is the predominant choice in this book, as well as other methods that frequently occur in the literature, e.g., stochastic collocation methods and spectral projection. We also briefly discuss methods that are not polynomial chaos methods themselves but are viable alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall R (2008) A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems. Rapport de recherche. http://hal.inria.fr/inria-00325315/en/

  2. Abgrall R, Congedo PM, Corre C, Galera S (2010) A simple semi-intrusive method for uncertainty quantification of shocked flows, comparison with a non-intrusive polynomial chaos method. In: ECCOMAS CFD, Lisbon

    Google Scholar 

  3. Babuška IM, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034

    Article  MATH  MathSciNet  Google Scholar 

  4. Bäck J, Nobile F, Tamellini L, Tempone R (2011) Implementation of optimal Galerkin and collocation approximations of PDEs with random coefficients. ESAIM Proc 33:10–21. doi:10.1051/proc/201133002, http://dx.doi.org/10.1051/proc/201133002

  5. Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Eur J Comput Mech 15:81–92

    MATH  Google Scholar 

  6. Blatman G, Sudret B (2008) Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mécanique 336(6):518–523

    Article  MATH  Google Scholar 

  7. Clenshaw CW, Curtis AR (1960) A method for numerical integration on an automatic computer. Numerische Mathematik 2:197

    Article  MATH  MathSciNet  Google Scholar 

  8. Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDEs with stochastic inputs. J Comput Phys 230(8):3015–3034. doi:10.1016/j.jcp.2011.01.002, http://dx.doi.org/10.1016/j.jcp.2011.01.002

  9. Ganapathysubramanian B, Zabaras N (2007) Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys 225(1):652–685. doi:10.1016/j.jcp.2006.12.014, http://dx.doi.org/10.1016/j.jcp.2006.12.014

  10. Gautschi W (1982) On generating orthogonal polynomials. SIAM J Sci Stat Comput 3:289–317. doi:10.1137/0903018

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  12. Golub GH, Welsch JH (1967) Calculation of Gauss quadrature rules. Tech rep, Stanford

    Google Scholar 

  13. Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: AIAA-2007-1939, 9th AIAA non-deterministic approaches conference, Honolulu

    Google Scholar 

  14. Keese A, Matthies H (2003) Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Tech rep, Institute of Scientific Computing TU Braunschweig, Brunswick

    Google Scholar 

  15. Mathelin L, Hussaini MY (2003) A stochastic collocation algorithm for uncertainty analysis. Tech Rep 2003-212153, NASA Langley Research Center

    Google Scholar 

  16. Mathelin L, Hussaini MY, Zang TA, Bataille F (2003) Uncertainty propagation for turbulent, compressible flow in a quasi-1D nozzle using stochastic methods. In: AIAA-2003-4240, 16TH AIAA CFD conference, Orlando, pp 23–26

    Google Scholar 

  17. Migliorati G, Nobile F, von Schwerin E, Tempone R (2013) Approximation of quantities of interest in stochastic PDEs by the random discrete L 2 projection on polynomial spaces. SIAM J Sci Comput 35(3):A1440–A1460

    Article  MATH  Google Scholar 

  18. Reagan MT, Najm HN, Ghanem RG, Knio OM (2003) Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust Flame 132(3):545–555

    Article  Google Scholar 

  19. Tuminaro RS, Phipps ET, Miller CW, Elman HC (2011) Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int J Uncertain Quantif 1(1):19–33

    Article  MATH  MathSciNet  Google Scholar 

  20. Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209:617–642. doi:http://dx.doi.org/10.1016/j.jcp.2005.03.023, http://dx.doi.org/10.1016/j.jcp.2005.03.023

  21. Wan X, Karniadakis GE (2006) Long-term behavior of polynomial chaos in stochastic flow simulations. Comput Methods Appl Math Eng 195:5582–5596

    Article  MATH  MathSciNet  Google Scholar 

  22. Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28(3):901–928. doi:10.1137/050627630, http://dx.doi.org/10.1137/050627630

  23. Xiu D (2007) Efficient collocational approach for parametric uncertainty analysis. Commun Comput Phys 2(2):293–309

    MATH  MathSciNet  Google Scholar 

  24. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton. http://www.worldcat.org/isbn/9780691142128

  25. Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27:1118–1139. doi:10.1137/040615201, http://dl.acm.org/citation.cfm?id=1103418.1108714

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettersson, M.P., Iaccarino, G., Nordström, J. (2015). Polynomial Chaos Methods. In: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10714-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10714-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10713-4

  • Online ISBN: 978-3-319-10714-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics