Skip to main content

Mean-Field Approximation and Quasi-Equilibrium Reduction of Markov Population Models

  • Conference paper
Quantitative Evaluation of Systems (QEST 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8657))

Included in the following conference series:

Abstract

Markov Population Model is a commonly used framework to describe stochastic systems. Their exact analysis is unfeasible in most cases because of the state space explosion. Approximations are usually sought, often with the goal of reducing the number of variables. Among them, the mean field limit and the quasi-equilibrium approximations stand out. We view them as techniques that are rooted in independent basic principles. At the basis of the mean field limit is the law of large numbers. The principle of the quasi-equilibrium reduction is the separation of temporal scales. It is common practice to apply both limits to an MPM yielding a fully reduced model. Although the two limits should be viewed as completely independent options, they are applied almost invariably in a fixed sequence: MF limit first, QE reduction second. We present a framework that makes explicit the distinction of the two reductions, and allows an arbitrary order of their application. By inverting the sequence, we show that the double limit does not commute in general: the mean field limit of a time-scale reduced model is not the same as the time-scale reduced limit of a mean field model. An example is provided to demonstrate this phenomenon. Sufficient conditions for the two operations to be freely exchangeable are also provided.

We acknowledge partial support from EU-FET project QUANTICOL (nr. 600708) and FRA-UniTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benäim, M., Le Boudec, J.-Y.: A class of mean field interaction models for computer and communication systems. Perf. Eval. 65(11), 823–838 (2008)

    Article  Google Scholar 

  2. Benäim, M., Le Boudec, J.-Y.: On mean field convergence and stationary regime. CoRR, abs/1111.5710 (2011)

    Google Scholar 

  3. Benäim, M., Weibull, J.W.: Deterministic approximation of stochastic evolution in games. Econometrica 71(3), 873–903 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bortolussi, L.: Limit behavior of the hybrid approximation of stochastic process algebras. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J. (eds.) ASMTA 2010. LNCS, vol. 6148, pp. 367–381. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bortolussi, L., Paškauskas, R.: Multiscale reductions of mean field and stochastic models. Technical Report TR-QC-04-2014, QUANTICOL Tech. Rep. (2014)

    Google Scholar 

  7. Bortolussi, L., Paškauskas, R.: Mean-Field approximation and Quasi-Equilibrium reduction of Markov Population Models (2014), http://arxiv.org/abs/1405.4200

  8. Bortolussi, L., Hayden, R.: Bounds on the deviation of discrete-time Markov chains from their mean-field model. Perf. Eval. 70(10), 736–749 (2013)

    Article  Google Scholar 

  9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: a tutorial. Perf. Eval. 70, 317–349 (2013)

    Article  Google Scholar 

  10. Bortolussi, L., Lanciani, R.: Model checking markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics 122(1), 014116 (2005)

    Google Scholar 

  12. Ethier, S.N., Kurtz, T.G.: Markov processes: characterization and convergence. series in probability and statistics. Wiley Interscience. Wiley (2005)

    Google Scholar 

  13. Gardiner, C.W.: Handbook of stochastic methods, vol. 3. Springer (1985)

    Google Scholar 

  14. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  15. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  16. Hayden, R., Bradley, J., Clark, A.: Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE TSE 39(1), 97–118 (2013)

    Google Scholar 

  17. Henzinger, T., Jobstmann, B., Wolf, V.: Formalisms for specifying Markovian population models. International Journal of Foundations of Computer Science 22(04), 823–841 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson, K.A., Goody, R.S.: The original Michaelis constant: Translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39), 8264–8269 (2011)

    Article  Google Scholar 

  19. Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. International Journal of Chemical Kinetics 26(4), 461–486 (1994)

    Article  Google Scholar 

  20. Le Boudec, J.-Y.: The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points. NHM 8(2), 529–540 (2013)

    Article  MATH  Google Scholar 

  21. Marquez-Lago, T.T., Stelling, J.: Counter-intuitive stochastic behavior of simple gene circuits with negative feedback. Biophysical Journal 98(9), 1742–1750 (2010)

    Article  Google Scholar 

  22. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combustion and Flame 88(3), 239–264 (1992)

    Article  Google Scholar 

  23. Mastny, E.A., Haseltine, E.L., Rawlings, J.B.: Two classes of quasi-steady-state model reductions for stochastic kinetics. The Journal of Chemical Physics 127(9), 094106 (2007)

    Google Scholar 

  24. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. Journal of Chemical Physics 118(11), 4999–5010 (2003)

    Article  Google Scholar 

  25. Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Reviews of Modern Physics 48(4), 571–585 (1976)

    Article  MathSciNet  Google Scholar 

  26. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. C&H (1995)

    Google Scholar 

  27. Stewart, G.W., Sun, J.: Matrix perturbation theory. Computer Science and Scientific Computing. Academic Press (1990)

    Google Scholar 

  28. Verhulst, F.: Methods and applications of singular perturbations: boundary layers and multiple timescale dynamics. Springer (2005)

    Google Scholar 

  29. Weinan, E., Liu, D., Vanden-Eijnden, E.: Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. Journ. of Comp. Phys. 221(1), 158–180 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bortolussi, L., Paškauskas, R. (2014). Mean-Field Approximation and Quasi-Equilibrium Reduction of Markov Population Models. In: Norman, G., Sanders, W. (eds) Quantitative Evaluation of Systems. QEST 2014. Lecture Notes in Computer Science, vol 8657. Springer, Cham. https://doi.org/10.1007/978-3-319-10696-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10696-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10695-3

  • Online ISBN: 978-3-319-10696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics