Symbolic Approximation of the Bounded Reachability Probability in Large Markov Chains
Conference paper
- 5 Citations
- 894 Downloads
Abstract
We present a novel technique to analyze the bounded reachability probability problem for large Markov chains. The essential idea is to incrementally search for sets of paths that lead to the goal region and to choose the sets in a way that allows us to easily determine the probability mass they represent. To effectively analyze the system dynamics using an SMT solver, we employ a finite-precision abstraction on the Markov chain and a custom quantifier elimination strategy. Through experimental evaluation on PRISM benchmark models we demonstrate the feasibility of the approach on models that are out of reach for previous methods.
Keywords
Markov Chain Model Check Probabilistic Choice Precision Parameter Goal Region
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35(4) (2008)Google Scholar
- 2.Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
- 3.Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 4.Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. In: Proc. of QEST, pp. 167–176. IEEE Computer Society (2009), www.mrmc-tool.org
- 5.Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 6.Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic analysis of probabilistic hybrid automata. Journal of Logic and Algebraic Programming 79(7), 436–466 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Teige, T.: Stochastic Satisfiability Modulo Theories: A Symbolic Technique for the Analysis of Probabilistic Hybrid Systems. Doctoral dissertation, Carl von Ossietzky Universität Oldenburg, Department of Computing Science, Germany (2012)Google Scholar
- 8.Teige, T., Fränzle, M.: Generalized Craig interpolation for stochastic Boolean satisfiability problems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 158–172. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 9.Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 10.Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 11.Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 12.Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time markov chains using bounded model checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 13.Braitling, B., Wimmer, R., Becker, B., Jansen, N., Ábrahám, E.: Counterexample generation for Markov chains using SMT-based bounded model checking. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 75–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 14.Jansen, N., Ábrahám, E., Zajzon, B., Wimmer, R., Schuster, J., Katoen, J.-P., Becker, B.: Symbolic counterexample generation for discrete-time Markov chains. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 134–151. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 15.Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Academic Press (2000)Google Scholar
- 16.Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified bit-vector formulas. Proc. of FMSD 42(1) (2013)Google Scholar
- 17.Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 18.Helmink, L., Sellink, M., Vaandrager, F.: Proof-checking a data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. Springer, Heidelberg (1994)CrossRefGoogle Scholar
- 19.Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions on Information and System Security (TISSEC) 1(1), 66–92 (1998)CrossRefGoogle Scholar
- 20.Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
- 21.Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2), 63–67 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
- 22.von Neumann, J.: Probabilistic logics and synthesis of reliable organisms from unreliable components. In: Shannon, C., McCarthy, J. (eds.) Proc. of Automata Studies, pp. 43–98. Princeton University Press (1956)Google Scholar
- 23.Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)Google Scholar
- 24.Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic approximation of the bounded reachability probability in large Markov chains. Technical Report MSR-TR-2014-74, Microsoft Research (2014)Google Scholar
- 25.Bellman, R.: Dynamic programming. Princeton University Press (1957)Google Scholar
- 26.Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences 39(10) (1953)Google Scholar
- 27.Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 28.Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Bounded probabilistic model checking with the Murϕ verifier. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 214–229. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 29.de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 30.Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. of POPL. ACM (1977)Google Scholar
- 31.Esparza, J., Gaiser, A.: Probabilistic abstractions with arbitrary domains. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 334–350. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 32.Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refinement for probabilistic software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 33.Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 34.Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)Google Scholar
- 35.Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 36.Han, T., Katoen, J.P., Berteun, D.: Counterexample generation in probabilistic model checking. IEEE Transactions on Software Engineering 35(2), 241–257 (2009)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014