Skip to main content

Energy Conversion—Motor Control

  • Chapter
  • First Online:
Engineering Embedded Systems
  • 2810 Accesses

Abstract

This technical essay deals with the control of a permanent magnet synchronous motor. We discuss electromagnetism in some detail. We derive the classical model of a permanent magnet synchronous machine and use this model to evaluate several control strategies. Field-oriented torque control and field-oriented speed control are introduced. Control without a sensor for the position of the rotor is mentioned briefly. A discussion of issues arising when implementing field-oriented control in software, the circuit of a power stage and some measurements conclude the treatise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after Edith Clarke, the first female University professor in Electrical Engineering in the United States.

  2. 2.

    Named after Robert H. Park, who first formulated a model of a synchronous machine in rotor coordinates.

  3. 3.

    The windings of permanent magnet machines which have a rotor with a core that is not cylindrical exhibit inductances which depend on the position of the rotor.

  4. 4.

    Also known as squirrel cage fan.

References

  • Blaschke F (1974) Method for controlling asynchronous machines

    Google Scholar 

  • Braess H, Seiffert U (2005) Handbook of automotive engineering. SAE International, Warrendale

    Google Scholar 

  • El-Refaie A (2010) Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges. IEEE Trans Industr Electron 57(1):107–121. doi:10.1109/TIE.2009.2030211

    Article  Google Scholar 

  • El-Refaie A, Jahns T, Novotny D (2006) Analysis of surface permanent magnet machines with fractional-slot concentrated windings. IEEE Trans Energy Convers 21(1):34–43. doi:10.1109/TEC.2005.858094

    Article  Google Scholar 

  • Fischer R (2009) Elektrische Maschinen. Hanser, Munich

    Google Scholar 

  • Hasse K (1969) Zur Dynamik drehzahlgeregelter Antriebe mit stromrichtergespeisten Asynchron-KurzschluĂźläufermaschinen. Ph.D. thesis, Technische Hochschule, Darmstadt

    Google Scholar 

  • Hendershot J, Miller T (1994) Design of brushless permanent magnet motors. Magna Physics Publishing, Oxford

    Google Scholar 

  • Hendershot J, Miller T (2010) Design of brushless permanent-magnet machines. Motor Design Books LLC, Oxford

    Google Scholar 

  • Linke M, Kennel R, Holtz J (2003) Sensorless speed and position control of synchronous machines using alternating carrier injection. In: Electric machines and drives conference, IEMDC’03. IEEE International, vol 2, pp 1211–1217. doi:10.1109/IEMDC.2003.1210394

  • Liwschitz MM (1943) Distribution factors and pitch factors of the harmonics of a fractional-slot winding. Trans Am Inst Electr Eng 62(10):664–666. doi:10.1109/T-AIEE.1943.5058623

    Article  Google Scholar 

  • Mohan N, Undeland T, Robbins W (2003) Power electronics: converters, applications and design. Wiley, Australia

    Google Scholar 

  • Park R (1929) Two-reaction theory of synchronous machines generalized method of analysis - part I. Trans Am Inst Electr Eng 48(3):716–727. doi:10.1109/T-AIEE.1929.5055275

  • Park R (1933) Two-reaction theory of synchronous machines - II. Trans Am Inst Electr Eng 52(2):352–354. doi:10.1109/T-AIEE.1933.5056309

    Article  Google Scholar 

  • Perassi H, Berger G, Petzoldt J (2005) Practical implementation of the sensorless field oriented control of a PMSM for wide speed range. In: European conference on power electronics and applications. doi:10.1109/EPE.2005.219552

  • Rieder UH, Schrödl M (2005) A simulation method for analyzing saliencies with respect to enhanced INFORM-capability for sensorless control of PM motors in the low speed range including standstill. In: European conference on power electronics and applications. doi:10.1109/EPE.2005.219744

  • Schröder D (2006) Leistungselektronische Bauelemente. Springer, Berlin

    Google Scholar 

  • Schröder D (2009) Elektrische Antriebe - Regelung von Antriebssystemen. Springer, Berlin

    Google Scholar 

  • Schröder D (2012) Leistungselektronische Schaltungen: Funktion Auslegung und Anwendung. Springer, Berlin

    Book  Google Scholar 

  • Schröder D (2013) Elektrische Antriebe - Grundlagen: Mit durchgerechneten Ăśbungs- und PrĂĽfungsaufgaben. Springer, Berlin

    Book  Google Scholar 

  • Schrödl M, Lambeck M (2003) Statistic properties of the INFORM method for highly dynamic sensorless control of PM motors down to standstill. In: Industrial electronics society, IECON ’03. The 29th annual conference of the IEEE, vol 2, pp 1479–1486, doi:10.1109/IECON.2003.1280276

  • Schrödl M, Hofer M, Staffler W (2006) Combining INFORM method, voltage model and mechanical observer for sensorless control of PM synchronous motors in the whole speed range including standstill. e & i Elektrotechnik und Informationstechnik 123(5):183–190. doi:10.1007/s00502-006-0340

    Article  Google Scholar 

  • Schrödl M, Hofer M, Staffler W (2007) Extended EMF- and parameter observer for sensorless controlled PMSM-machines at low speed. In: European conference on power electronics and applications. pp 1–8, doi:10.1109/EPE.2007.4417536

  • Schrödl M, Staffler W, Hofer M (2009) Accuracy of the sensorless determined rotor position for industrial standard drives in the whole speed range. In: Power electronics and applications, EPE ’09. 13th European conference on, pp 1–6

    Google Scholar 

  • Staffler W, Schrödl M (2010) Extended mechanical observer structure with load torque estimation for sensorless dynamic control of permanent magnet synchronous machines. In: 14th international power electronics and motion control conferences (EPE/PEMC), pp S1-18–S1-22, doi:10.1109/EPEPEMC.2010.5606516

  • Wisniewski J, Koczara W (2008a) Control of axial flux permanent magnet motor by the PIPCRM method at standstill and at low speed. In: 13th Power electronics and motion control conference, EPE-PEMC 2008, pp 2254–2260. doi:10.1109/EPEPEMC.2008.4635599

  • Wisniewski J, Koczara W (2008b) The sensorless rotor position identification and low speed operation of the axial flux permanent magnet motor controlled by the novel PIPCRM method. In: Power electronics specialists conference, PESC 2008, IEEE, pp 1502–1507. doi:10.1109/PESC.2008.4592149

  • Zhu Z, Howe D (1993a) Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. armature-reaction field. IEEE Trans Magn 29(1):136–142. doi:10.1109/20.195558

  • Zhu Z, Howe D (1993b) Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. effect of stator slotting. IEEE Trans Magn 29(1):143–151. doi:10.1109/20.195559

  • Zhu Z, Howe D (1993c) Instantaneous magnetic field distribution in permanent magnet brushless DC motors. IV. magnetic field on load. IEEE Trans Magn 29(1):152–158. doi:10.1109/20.195560

  • Zhu Z, Howe D, Bolte E, Ackermann B (1993) Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. open-circuit field. IEEE Trans Magn 29(1):124–135. doi:10.1109/20.195557

    Article  Google Scholar 

  • Zhu Z, Howe D, Chan C (2002) Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. IEEE Trans Magn 38(1):229–238. doi:10.1109/20.990112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hintenaus .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hintenaus, P. (2015). Energy Conversion—Motor Control. In: Engineering Embedded Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-10680-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10680-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10679-3

  • Online ISBN: 978-3-319-10680-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics