Skip to main content

Below-Ground Investigations

  • Chapter
  • First Online:
Book cover Holocaust Archaeologies
  • 776 Accesses

Abstract

Because of the Nazis’ attempts to hide their crimes and landscape change since the end of the Second World War, much of the evidence of the Holocaust has been deliberately or naturally buried or concealed. Once a thorough assessment of any surviving above-ground evidence has been undertaken (Chap. 6), various methods can be employed to assess what lies below the ground. Assessing this evidence need not mean that invasive work has to be undertaken, given the variety of geophysical techniques that now exist. Equally, when invasive work is undertaken, it should be remembered that a wide range of evidence types can be recovered and analysed through various novel methods derived from archaeology and forensic science. This chapter provides a review of the methods that should be considered when assessing buried remains and the specific challenges associated with them when addressing the physical evidence of the Holocaust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, C. J., Haak, W., Donlon, D., & Cooper, A. (2011). Survival and recovery of DNA from ancient teeth and bones. Journal of Archaeological Science, 38(5), 956–964.

    Article  Google Scholar 

  • Allentoft, M. E. (2013). Recovering samples for ancient DNA research—guidelines for the field archaeologist. Antiquity, 87, 338.

    Google Scholar 

  • BABAO. (2013). Ethics and standards. http://www.babao.org.uk/index/ethics-and-standards. Accessed 30 March 2014.

  • Balme, J., & Paterson, A. (Eds.). (2014). Archaeology in practice: A student guide to archaeological analyses. London: Wiley.

    Google Scholar 

  • Barker, P. (2005) Techniques of archaeological excavation. Abingdon: Taylor and Francis.

    Google Scholar 

  • Beder, J. (2002). Mourning the unfound: How we can help. Families in Society, 83(4), 400–403.

    Article  Google Scholar 

  • Bevan, B. W., & Smekalova, T. N. (2013). Magnetic exploration of archaeological sites. In C. Corsi, B. Slapšak, & F. Vermeulen (Eds.), Good practice in archaeological diagnostics (pp. 133–152). Natural Science in Archaeology. New York: Springer International Publishing.

    Google Scholar 

  • Blau, S., & Ubelaker, D. H. (Eds.). (2009). Handbook of forensic anthropology and archaeology. Walnut Creek: Left Coast Press, Inc.

    Google Scholar 

  • Buchenwald and Mittelbau-Dora Memorials Foundation. 2014. http://www.buchenwald.de/fileadmin/buchenwald/fundstuecksammlung/index_findbuch.html. Accessed 20 April 2014.

  • Bull, I. D., Berstan, R., Vass, A., & Evershed, R. P. (2009). Identification of a disinterred grave by molecular and stable isotope analysis. Science & Justice, 49(2), 142–149.

    Article  Google Scholar 

  • Cheetham, P. (2005). Forensic geophysical survey. In J. Hunter & M. Cox (Eds.), Forensic archaeology: Advances in theory and practice. London: Routledge.

    Google Scholar 

  • Conyers, L. B. (2013). Ground penetrating radar for archaeology. Lanham: AltaMira Press.

    Google Scholar 

  • Conyers, L., & Goodman, D. (2004). Ground penetrating radar: An introduction for archaeologists (2nd ed.). Lanham: AltaMira Press.

    Google Scholar 

  • Cox, M., Flavel, A., Hanson, I., Laver, J., & Wessling, R. (Eds.). (2007). The scientific investigation of mass graves. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davenport, G. Clark. (2001). Remote sensing applications in forensic investigations. Historical Archaeology, 35(1), 87–99.

    Google Scholar 

  • Drewett, P. (2011). Field archaeology: An introduction. London: Routledge.

    Google Scholar 

  • Dupras, T. L., Schultz, J. J., Wheeler, S. M., & Williams, L. J. (2011). Forensic recovery of human remains: Archaeological approaches. Boca Raton: CRC Press.

    Book  Google Scholar 

  • English Heritage. (2008). Geophysical survey in archaeological field evaluations (2nd ed.). Swindon: English Heritage.

    Google Scholar 

  • Fenning, P., & Donnelley, L. (2004). Geophysical techniques for forensic investigation. In K. Pye & D. Croft (Eds.), Forensic geoscience. London: Geological Society (special publications, 232(1), 11–20).

    Google Scholar 

  • Francke, J. (2012). A review of selected ground penetrating radar applications to mineral resource evaluations. Journal of Applied Geophysics, 81, 29–37.

    Article  Google Scholar 

  • Goodman, D., & Piro, S. (2013). GPR remote sensing in archaeology. Berlin: Springer Berlin Heidelberg.

    Book  Google Scholar 

  • Gaffney, C., & Gater, J. (2003). Revealing the buried past. Stroud: Tempus.

    Google Scholar 

  • Greene, K. (1993). Archaeology: An introduction. Routledge: London.

    Google Scholar 

  • Greene, K., & Moore, T. (2010). Archaeology: An introduction. Routledge: London.

    Google Scholar 

  • Haglund, W. (2002). Recent mass graves: An introduction. In W. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy: Method, theory and archaeological perspectives (pp. 243–262). Boca Raton: CRC Press.

    Google Scholar 

  • Hansel, F. A., Bull, I. D., & Evershed, R. P. (2011). Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues of archaeological pottery vessels. Rapid Communications in Mass Spectrometry, 25(13), 1893–1898.

    Article  Google Scholar 

  • Hopkins, D. W., Wiltshire, P. E. J., & Turner, B. D. (2000). Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Applied Soil Ecology, 14(3), 283–288.

    Article  Google Scholar 

  • Hunter, J., & Cox, M. (2005). Forensic archaeology: Advances in theory and practice. London: Routledge.

    Google Scholar 

  • Hunter, J., Simpson, B., & Sturdy Colls, C. (2013). Forensic approaches to buried remains. London: Wiley.

    Google Scholar 

  • ICMP. (2014). The missing: An agenda for the future. Accessed 22 Dec 2013.

    Google Scholar 

  • Icove, D. J., Haan, J. D. D., & Haynes, G. A. (2012). Forensic fire scene reconstruction. Upper Saddle River: Pearson Higher Ed.

    Google Scholar 

  • ICRC. (2009). Missing people, DNA analysis and identification of human remains. A guide to best practice in armed conflicts and other situations of armed violence (2nd ed.). http://www.icrc.org/eng/assets/files/other/icrc_002_4010.pdf. Accessed 8 Oct 2013.

  • Jasinski, M., Ossowski, A., & Szwagrzyk, K. (2013). Give them back their names and faces—competing memories and victims of communism in Poland 1939–1956. Paper presented at the Competing Memories Conference, 29 October 2013, Amsterdam.

    Google Scholar 

  • Killam, E. (1990). The detection of human remains. Springfield: Charles C Thomas.

    Google Scholar 

  • Khodakova, A. S., Burgoyne, L., Abarno, D., & Linacre, A. (2013). Forensic analysis of soils using single arbitrarily primed amplification and high throughput sequencing. Forensic Science International: Genetics Supplement Series, 4(1), e39–e40.

    Google Scholar 

  • Kvamme, K. (2003). Geophysical surveys as landscape archaeology. American Antiquity, 68(3), 435–457.

    Article  Google Scholar 

  • Linford, N. T., & Linford, P. K. (2004). Ground penetrating radar survey over a Roman building at Groundwell Ridge, Blunsdon St Andrew, Swindon, UK. Archaeological Prospection, 11(1), 49–55.

    Article  Google Scholar 

  • Markiewicz, J., Gubala, W., & Labedz, J. (1994). A study of the cyanide compounds content in the walls of the gas chambers in the former Auschwitz and Birkenau concentration camps. http://www.holocaust-history.org/auschwitz/chemistry/iffr/report.shtml. Accessed 15 May 2012.

  • Márquez-Grant, N., & Fibiger, L. (2012). The routledge handbook of archaeological human remains and legislation: An international guide to laws and practice in the excavation and treatment of archaeological human remains. London: Routledge.

    Google Scholar 

  • McKinley, J., & Roberts, C. (1993). Excavation and post-excavation treatment of cremated and inhumed human remains. Technical Paper. The Institute of Field Archaeologists, Issue 13, Reading.

    Google Scholar 

  • Meier-Augenstein, W. (2011). Stable isotope forensics: An introduction to the forensic application of stable isotope analysis (Vol. 3). London: Wiley.

    Google Scholar 

  • Ossowski, A., Kuś, M., Brzeziński, P., Prüffer, J., Piątek, J., Zielińska, G., & Parafiniuk, M. (2013). Example of human individual identification from World War II gravesite. Forensic Science International, 233(1), 179–192.

    Article  Google Scholar 

  • Oswin, J. (2009). A field guide to geophysics in archaeology. New York: Springer Praxis Books/Springer International Publishing.

    Book  Google Scholar 

  • Panisova, J., Fraštia, M., Wunderlich, T., Pašteka, R., & Kušnirák, D. (2013). Microgravity and ground penetrating radar investigations of subsurface features at the St Catherine’s Monastery, Slovakia. Archaeological Prospection, 20(3), 163–174.

    Article  Google Scholar 

  • Paradopoulos, N. G., Tsourlos, P., Tsokas, G. N., & Sarris, A. (2006). Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeological Prospection, 13, 163–181.

    Article  Google Scholar 

  • Porta, D., Poppa, P., Regazzola, V., Gibelli, D., Schillaci, D. R., Amadasi, A., & Cattaneo, C. (2013). The importance of an anthropological scene of crime investigation in the case of burnt remains in vehicles: 3 case studies. The American Journal of Forensic Medicine and Pathology, 34(3), 195–200.

    Article  Google Scholar 

  • Pye, K., & Croft, D. (Eds.). (2004). Forensic geoscience. London: Geological Society (special publications, 232(1), 1–5).

    Google Scholar 

  • Ruffell, A., Pringle, J. K., & Forbes, S. (2014). Search protocols for hidden forensic objects beneath floors and within walls. Forensic Science International, 237, 137–145.

    Article  Google Scholar 

  • Schmidt, A. (2013). Earth resistance for archaeologists. Lanham: AltaMira Press.

    Google Scholar 

  • Schmidt, C. W., & Symes, S. A. (2011). The analysis of burned human remains. Waltham: Academic.

    Google Scholar 

  • Schotsmans, E. M., Denton, J., Dekeirsschieter, J., Ivaneanu, T., Leentjes, S., Janaway, R. C., & Wilson, A. S. (2012). Effects of hydrated lime and quicklime on the decay of buried human remains using pig cadavers as human body analogues. Forensic Science International, 217(1), 50–59.

    Article  Google Scholar 

  • Schultz, J. (2007). Using ground penetrating radar to locate clandestine graves of homicide victims: Forming forensic archaeology partnerships with law enforcement. Homicide Studies, 11, 15–29.

    Article  Google Scholar 

  • Schute, I. (2013). Comparison of artefacts from camp westerbork and Sobibor establishing research potential (campaign autumn 2013). http://sobibor.info.pl/wp-content/uploads/2014/02/Report-by-I.Schute-autumn-2013.pdf. Accessed 6 July 2013.

  • Scott, A., & Hunter, J. R. (2004). Environmental influences on resistivity mapping for the detection of clandestine graves. In K. Pye & D. Croft (Eds.), Forensic geoscience. London: Geological Society (special publications, 232(1), 21–32).

    Google Scholar 

  • Sozer, A. C. (2014). DNA analysis for missing person identification in mass fatalities. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Stadler, S., Stefanuto, P. H., Brokl, M., Forbes, S. L., & Focant, J. F. (2012). Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Analytical Chemistry, 85(2), 998–1005.

    Article  Google Scholar 

  • Sturdy Colls, C. (2012). Holocaust archaeology: Archaeological approaches to landscapes of Nazi Genocide and persecution. Unpublished PhD Thesis, University of Birmingham.

    Google Scholar 

  • Sturdy Colls, C. (2014a). Finding Treblinka: An archaeological evaluation. Fieldwork Report. Centre of Archaeology, Staffordshire University.

    Google Scholar 

  • Sturdy Colls, C. (2014b). Gone but not forgotten: Archaeological approaches to the landscape of the former extermination camp at Treblinka, Poland, Holocaust Studies and Materials 3, 239–286. Warsaw.

    Google Scholar 

  • Theune, C. 2010. Historical archaeology in National Socialist concentration camps in Central Europe. Historische Archäologie, 2, 1–13.

    Google Scholar 

  • Thomas, S., & Stone, P. (2009). Metal detecting and archaeology. Ipswich: Boydell Press.

    Google Scholar 

  • Tibbett, M., & Carter, D. O. (Eds.). (2010). Soil analysis in forensic taphonomy: Chemical and biological effects of buried human remains. Boca Raton: CRC Press.

    Google Scholar 

  • Urban, T. M., Leon, J. F., Manning, S. W., & Fisher, K. D. (2014). High resolution GPR mapping of late bronze age architecture at Kalavasos-Ayios Dhimitrios, Cyprus. Journal of Applied Geophysics, 107, 129–136.

    Google Scholar 

  • von der Lühe, B., Dawson, L. A., Mayes, R. W., Forbes, S. L., & Fiedler, S. (2013). Investigation of sterols as potential biomarkers for the detection of pig decomposition fluid in soils. Forensic Science International, 230(1), 68–73.

    Article  Google Scholar 

  • Watters, M., & Hunter, J.R. (2005). Geophysics and burials: Field experience and software development. In K. Pye & D. Croft (Eds.), Forensic geoscience (pp. 21–31). London: Geological Society.

    Google Scholar 

  • Weaver, W. (2006). Ground penetrating radar mapping in clay: success from South Carolina, USA. Archaeological Prospection, 13(2), 147–150.

    Article  Google Scholar 

  • Williams, E. D., & Crews, J. D. (2003). From dust to dust: Ethical and practical issues involved in the location, exhumation, and identification of bodies from mass graves. Croatian Medical Journal, 44(3), 251–258.

    Google Scholar 

  • Wijnen, J. A. T., & Schute, I. (2010). Archaeologisch onderzoek in een ‘schuldig landschap’: Concentratiekamp Amersfoort. RAAP Report 2197. Weesp: RAAP Archaeologisch Adviesbureau BV.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Sturdy Colls .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sturdy Colls, C. (2015). Below-Ground Investigations. In: Holocaust Archaeologies. Springer, Cham. https://doi.org/10.1007/978-3-319-10641-0_7

Download citation

Publish with us

Policies and ethics