Skip to main content

Above-Ground Field Investigations

  • Chapter
  • First Online:
Holocaust Archaeologies
  • 788 Accesses

Abstract

Archaeological fieldwork no longer needs to focus solely on excavation owing to the variety of non-invasive survey techniques that are now available. Essentially, these techniques offer the opportunity to record and analyse macro- and micro-scale evidence pertaining to a site, and they are non-destructive. Many of these methods can also be employed should excavation take place in order to provide a detailed record of any evidence found. This chapter provides an overview of a variety of non-invasive methods which are particularly suited to early-stage in-field investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S., & Thomason, B. (2003). Where on Earth are we? The Global Positioning System (GPS) In archaeological field survey. Swindon: English Heritage Technical Paper.

    Google Scholar 

  • Andrews, D., & Blake, B. (2003). Measured and drawn: Techniques and practice for metric survey of historic buildings. Swindon: English Heritage.

    Google Scholar 

  • Anne Frank House. (2014). The Secret Annex Online. http://www.annefrank.org/en/Subsites/Home/Enter-the-3D-house/#/house/20/. Accessed 20 April 2014.

  • Barnes, A. (2011). Guides to good practice: Close-range photogrammetry. archaeology data service/digital antiquity: Guides to good practice. http://guides.archaeologydataservice.ac.uk/g2gp/Photogram_Toc. Accessed 2 Feb 2014.

  • Brutto, M. L., & Meli, P. (2012). Computer vision tools for 3D modelling in archaeology. International Journal of Heritage in the Digital Era, 1, 1–6.

    Article  Google Scholar 

  • Buck, S. C. (2003). Searching for graves using geophysical technology: Field tests with ground penetrating radar, magnetometry, and electrical resistivity. Journal of Forensic Sciences, 48(1), 1–7.

    Google Scholar 

  • Capozzoli, L., Delle Rose, M., Lasaponara, R., Masini, N., Rizzo, E., & Romano, G. (2013). Satellite remote sensing and multiscale geophysical investigations for geoarcheology: case studies from Perù. In EGU General Assembly Conference Abstracts (Vol. 15, pp. 11505).

    Google Scholar 

  • Carrivick J. L., Turner, A. G. D., Russell, A. J., Ingeman-Nielsen T., & Yde, J. C (2013). Outburst flood evolution at Russell Glacier, western Greenland: Effects of a bedrock channel cascade with intermediary lakes. Quaternary Science Reviews, 67, 39–58.

    Article  Google Scholar 

  • Centre of Archaeology. (2014). http://blogs.staffs.ac.uk/archaeology/projects/holocaust-landscapes/. Accessed 13 Dec 2013.

  • Channel 5. (2013). Treblinka: Inside Hitler’s Secret Death Camp. First broadcast in the UK, 27 November 2013.

    Google Scholar 

  • Chapman, H. (2006). Landscape archaeology and GIS. Stroud: Tempus.

    Google Scholar 

  • Cox, M., Flavel, A., Hanson, I., Laver, J., & Wessling, R. (Eds.), (2007). The scientific investigation of mass graves. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crutchley, S., & Crow, P. (2010). The light fantastic: Using airborne LIDAR in archaeological survey. Swindon: English Heritage.

    Google Scholar 

  • De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., & De Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journal of Archaeological Science, 41, 251–262.

    Article  Google Scholar 

  • Dolan, A. M., & Thompson, R. M. (2013). Integration of drones into domestic airspace: Selected legal issues. Congressional research service. USA: Library of Congress.

    Google Scholar 

  • Drewett, P. (2011). Field archaeology: An introduction. London: Routledge.

    Google Scholar 

  • Dupras, T. L., Schultz, J. J., Wheeler, S. M., & Williams, L. J. (2011). Forensic recovery of human remains: Archaeological approaches. Boca Raton: CRC Press.

    Google Scholar 

  • English Heritage. (2007). Understanding the archaeology of landscapes: A guide to good working practice. Swindon: English Heritage.

    Google Scholar 

  • English Heritage. (2011). 3D laser scanning for heritage. Advice and guidance. Swindon: English Heritage.

    Google Scholar 

  • Fairgreave, S. I. (2008). Forensic cremation: Recovery and analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P., & Mancera-Taboada, J. (2014). Image-Based modelling from Unmanned Aerial Vehicle (UAV) photogrammetry: An effective, low-cost tool for archaeological applications. Archaeometry online. http://onlinelibrary.wiley.com/doi/10.1111/arcm.12078/full. Accessed 18 June 2014.

  • Ficco, M., Palmieri, F., & Castiglione, A. (2014). Hybrid indoor and outdoor location services for new generation mobile terminals. Personal and Ubiquitous Computing, 18(2), 271–285.

    Article  Google Scholar 

  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: A new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421–430.

    Article  Google Scholar 

  • Green, S., Bevan, A., & Shapland, M. (2014). A comparative assessment of structure from motion methods for archaeological research. Journal of Archaeological Science, 46, 173–181.

    Article  Google Scholar 

  • Guarnieri, A., Milan, N., & Vettore, A. (2013). Monitoring of complex structure for structural control using terrestrial laser scanning (TLS) and photogrammetry. International Journal of Architectural Heritage, 7(1), 54–67.

    Article  Google Scholar 

  • Haglund, W., & Sorg, M. H. (Eds.). (1997). Forensic taphonomy: The postmortem fate of human remains. Boca Raton: CRC Press.

    Google Scholar 

  • Haglund, W., & Sorg, M. H. (Eds.). (2002). Advances in forensic taphonomy: Method, theory and archaeological perspectives. Boca Raton: CRC Press.

    Google Scholar 

  • Hochrein, M. J. (2002). An autopsy of the grave: Recognizing, collecting and preserving forensic geotaphonomic evidence. In W. Haglund & M. H Sorg (Eds), Advances in forensic taphonomy: Method, theory and archaeological perspectives (pp. 45–70). Boca Raton: CRC Press.

    Google Scholar 

  • Howard, P. (2006). Archaeological surveying and mapping: Recording and depicting the landscape. London: Routledge.

    Google Scholar 

  • Hunter, J. (1996). Locating buried remains. In J. Hunter, C. Roberts, & A. Martin (Eds.), Studies in Crime: An Introduction to Forensic Archaeology (pp. 7–23). London: Routledge.

    Google Scholar 

  • Hunter, J., & Cox, M. (2005). Forensic archaeology: Advances in theory and practice. London: Routledge.

    Google Scholar 

  • Hunter, J., Simpson, B., & Sturdy Colls, C. (2013). Forensic approaches to buried remains. London: Wiley.

    Google Scholar 

  • IfA (Institute for Archaeologists). (2010). By-laws. Code of conduct. Reading.

    Google Scholar 

  • Jackson, A. R., & Jackson, J. M. (2008). Forensic science. Upper Saddle River: Pearson Education.

    Google Scholar 

  • Jacobs, A., & Jacobs, K. (undated). A Virtual Tour of Auschwitz/Birkenau. http://www.remember.org/auschwitz/. Accessed 17 June 2013.

  • Kersten, T. P., & Lindstaedt, M. (2012). Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects. In Progress in Cultural Heritage Preservation, pp. 1–10.

    Google Scholar 

  • Killam, E. W. (2004). The detection of human remains. Springfield: Charles C Thomas.

    Google Scholar 

  • Koutsoudis, A., Vidmar, B., Ioannakis, G., Arnaoutoglou, F., Pavlidis, G., & Charzas, C. (2014). Mulit-image 3D reconstruction data evaluation. Journal of Cultural Heritage, 15, 73–79.

    Article  Google Scholar 

  • Kvamme, K. (2006). Integrating multidimensional geophysical data. ArchaeologicalProspection, 13(2), 91–102.

    Google Scholar 

  • Leica (Leica Geosystems). (2002). GPS System 500. GPS Equipment User Manual. Version 4. Switzerland.

    Google Scholar 

  • Letellier, R., & Eppich, R. (2011). Recording, documentation and information management for the conservation of heritage places. London: Routledge.

    Google Scholar 

  • Lui, J. G., & Mason, P. (2009) Essential image processing and GIS for remote sensing. London: Wiley.

    Google Scholar 

  • McCarthy, J. (2014). Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. Journal of Archaeological Science, 43, 175–185.

    Article  Google Scholar 

  • Mozas-Calvache, A. T., Pérez-García, J. L., Cardenal-Escarcena, F. J., Mata-Castro, E., & Delgado-García, J. (2012). Method for photogrammetric surveying of archaeological sites with light aerial platforms. Journal of Archaeological Science, 39(2), 521–530.

    Article  Google Scholar 

  • Nesi, L. (2014) 3D laser scanning technology in building archaeology. Saarbrücken: LAP Lambert Academic Publishing.

    Google Scholar 

  • Nguyen, H. L., Castelli, E., Dao, T. K., Nguyen, V. T., & Pham, T. T. (2014). Multimodal Combination of GPS, WiFi, RFID and Step Count for User Localization. Ubiquitous Information Technologies and Applications, (pp. 675–681).

    Google Scholar 

  • Nilssen, D. (2013). The usage of unmanned aerial vehicles and their prospects in Archaeology. Unpublished Masters Thesis. University of Lund. http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3800733&fileOId=3800822. Accessed 13 April 2014.

  • Nobes, D.C. (2000). The search for Yvonne: A case example of the delineation of a grave using near-Surface geophysical methods. Journal of Forensic Sciences, 45(3), 715–721.

    Google Scholar 

  • Opitz, R., & Cowley, D. (2013) Interpreting archaeological topography: 3D data, visualisation and observation. Oxford: Oxbox Books.

    Google Scholar 

  • Parcak, S. (2009). Satellite remote sensing for archaeology. London: Routledge.

    Google Scholar 

  • Pye, K., & Croft, D. (Eds.). (2004). Forensic Geoscience. Geological Society, Special Publications, 232(1), 1–5.London.

    Google Scholar 

  • Reder, R. (1999). Bełżec. Krakow: Panstwowe Muzeum Oswiecim-Brzezinka.

    Google Scholar 

  • Rossmo, D. K. (2000). Geographic profiling. Boca Raton: CRC Press.

    Google Scholar 

  • Royal Geographical Society. (2005). Field techniques: GIS, GPS and remote sensing. London: RGS.

    Google Scholar 

  • Ruffell, A., & McKinley, J. (2008). Geoforensics. London: Wiley.

    Google Scholar 

  • Schlag, C. (2013). The new privacy battle: How the expanding use of drones continues to erode our concept of privacy and privacy rights. Pittsburgh Journal of Technology Law and Policy, 13(2), i.

    Google Scholar 

  • Sturdy, C. (2007). The role of the forensic archaeologist in long-term searches for human remains. Unpublished BA Thesis, University of Birmingham.

    Google Scholar 

  • Sturdy Colls, C. (2014). Gone but not forgotten: Archaeological approaches to the landscape of the former extermination camp at Treblinka, Poland. Holocaust Studies and Materials 3, 239–289.

    Google Scholar 

  • Sturdy Colls, C., & Colls, K. (2013). The Alderney archaeological research project 2010–2012. Alderney Society Bulletin.

    Google Scholar 

  • Uricchio, W. (2011). The algorithmic turn: Photosynth, augmented reality and the changing implications of the image. Visual Studies, 26(1), 25–35.

    Article  Google Scholar 

  • Vosselman, G., & Maas, H-G. (2010) Airborne and terrestrial laser scanning. Caithness: Whittles Publishing.

    Google Scholar 

  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Sturdy Colls .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sturdy Colls, C. (2015). Above-Ground Field Investigations. In: Holocaust Archaeologies. Springer, Cham. https://doi.org/10.1007/978-3-319-10641-0_6

Download citation

Publish with us

Policies and ethics