Skip to main content

FPGA-Based Scalable Custom Computing Accelerator for Computational Fluid Dynamics Based on Lattice BoltzmannMethod

  • Conference paper
  • First Online:
Book cover Sustained Simulation Performance 2014

Abstract

This paper presents a tightly-coupled FPGA cluster for custom computing of fluid dynamics simulation, and evaluates its performance with prototype implementation. For scalable and efficient computation with a lot of FPGA accelerators, we propose an accelerator-domain network (ADN) that brings low-latency and high-speed data transfer by directly connecting FPGAs. We describe implementation of a prototype cluster node with four FPGAs, and their on-chip framework for high-speed data streaming and computing. In performance evaluation, we demonstrate that our custom computing machine for fluid dynamics computation with the lattice-Boltzmann method (LBM) exploits both temporal and spatial parallelism, and scales the performance well with the number of FPGAs. As a result, we achieved 98.8 % of the peak performance of 73.0 GFlop/s with four FPGAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takizawa, H., Yamada, N., Sakai, S., Kobayashi, H.: Radiative heat transfer simulation using programmable graphics hardware. In: Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science, pp. 29–36 (2006)

    Google Scholar 

  2. TOP500. http://www.top500.org (2014)

  3. Makino, J.: The GRAPE project. Comput. Sci. Eng. 8(1), 30–40 (2006)

    Article  MathSciNet  Google Scholar 

  4. Shaw David E., et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51(7), 91–97 (2008)

    Article  Google Scholar 

  5. Shirazi, N., Walters, A., Athanas, P.: Quantitative analysis of floating point arithmetic on FPGA based custom computing machines. In: Proceedings of the IEEE Symposium on FPGA’s for Custom Computing Machines, pp. 155–162 (1995)

    Google Scholar 

  6. deLorimier, M., DeHon, A.: Floating-point sparse matrix-vector multiply for FPGAs. In: Proceedings of the International Symposium on Field-Programmable Gate Arrays, pp. 75–85 (2005)

    Google Scholar 

  7. Zhuo, L., Prasanna, V.K.: Sparse matrix-vector multiplication on FPGAs. In: Proceedings of the International Symposium on Field-Programmable Gate Arrays, pp. 63–74 (2005)

    Google Scholar 

  8. Dou, Y., Vassiliadis, S., Kuzmanov, G.K., Gaydadjiev, G.N.: 64-bit floating-point FPGA matrix multiplication. In: Proceedings of the International Symposium on Field-Programmable Gate Arrays, pp. 86–95 (2005)

    Google Scholar 

  9. Sano, K., Pell, O., Luk, W., Yamamoto, S.: FPGA-based streaming computation for lattice boltzmann method. In: Proceedings of the International Conference on Field-Programmable Technology, pp. 233–236 (2007)

    Google Scholar 

  10. Murtaza, S., Hoekstra, A.G., Sloot P.M.: Compute bound and I/O bound cellular automata simulations on FPGA logic. ACM Trans. Reconfigurable Technol. Syst. 1(4) (2009) Article 23.

    Google Scholar 

  11. Sano, K., Luzhou, W., Hatsuda, Y., Iizuka, T., Yamamoto, S.: FPGA-array with bandwidth-reduction mechanism for scalable and power-efficient numerical simulations based on finite difference methods. ACM Trans. Reconfigurable Technol. Syst. 3(4) (2010)

    Google Scholar 

  12. Murtaza, S., Hoekstra, A.G., Sloot, P.M.: Cellular automata simulation on a FPGA cluster. Int. J. High Perform. Comput. Appl. 25(2), 193–204 (2011)

    Article  Google Scholar 

  13. Kono, Y., Sano, K., Yamamoto, S.: Scalability analysis of tightly-coupled FPGA-cluster for lattice Boltzmann computation. In: Proceedings of the 22nd International Conference on Field-Programmable Logic and Applications, August 2012. Paper W3B1.

    Google Scholar 

  14. Sano, K., Hatsuda, Y., Yamamoto, S.: Multi-FPGA accelerator for scalable stencil computation with constant memory-bandwidth. IEEE Trans. Parallel Distrib. Syst. 25(3), 695–705 (2014)

    Article  Google Scholar 

  15. Skordos, P.A.: Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E 48(6), 4823–4842 (1993)

    Article  MathSciNet  Google Scholar 

  16. Sano, K., Nishikawa, T., Aoki, T., Yamamoto, S.: Evaluating power and energy consumption of FPGA-based custom computing machines for scientific floating-point computation. In: Proceedings of the International Conference on Field-Programmable Technology, pp. 301–304 (2008)

    Google Scholar 

  17. Terasic Technologies. http://www.terasic.com (2013)

  18. Altera Corporation. http://www.altera.com/literature/ (2013)

  19. Inamuro, T., Yoshino, M., Ogino, F.: A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids 7(12), 2928–2930 (1995)

    Article  MATH  Google Scholar 

  20. Noble, D.R., Chen, S., Georgiadis, J.G., Buckius, R.O.: A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids 7(1), 203–209 (1995)

    Article  MATH  Google Scholar 

  21. Chen, S., Wang, Z., Shan, X., Doolen, G.D.: Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat. Phys. 68(3–4), 379–400 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kobori, T., Maruyama, T., Hoshino, T.: A celluer automata system with FPGA. In: Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 120–129 (2001)

    Google Scholar 

  23. Sano, K., Kono, Y., Suzuki, H., Chiba, R., Ito, R., Koizumi, K., Yamamoto, S.: Efficient custom computing of fully-streamed lattice Boltzmann method on tightly-coupled FPGA cluster. ACM SIGARCH Computer Architecture News, 41(5), 47–52 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Grant-in-Aid for Scientific Research (B) No. 23300012 and Grant-in-Aid for Challenging Exploratory Research No. 23650021 from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank the support by ALTERA university program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sano, K. (2015). FPGA-Based Scalable Custom Computing Accelerator for Computational Fluid Dynamics Based on Lattice BoltzmannMethod. In: Resch, M., Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds) Sustained Simulation Performance 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-10626-7_16

Download citation

Publish with us

Policies and ethics