Skip to main content

First Results from Project Dragonfly

  • Conference paper
  • First Online:
Lessons from the Local Group

Abstract

We describe first results from the Dragonfly Telephoto Array, a robotic imaging system optimized for the detection of extended ultra low surface brightness structures. The imaging system is comprised of multiple commercial 400 mm \(f/2.8\) telephoto lenses which have high performance sub-wavelength nano-fabricated optical coatings designed to minimize scattered light and ghosting, resulting in wide-field low surface brightness imaging performance an order of magnitude better than that of the best reflectors optimized for wide-field imaging. The array is capable of directly imaging low surface brightness structures (such as streams and faint dwarf galaxies) that have hitherto only been detectable using star counts. Therefore a range of studies that have hitherto been restricted to the Local Group can now be undertaken using samples of hundreds of more distant galaxies. Harnessing this new capability, the Dragonfly Telephoto Array is now executing a fully-automated multi-year imaging survey of a sample of nearby galaxies in order to undertake the first census of ultra-faint substructures in galaxies in the nearby Universe. In this conference writeup, we report some early results from a single galaxy, M101, that we have used to help test the system. The radial surface brightness profile of this galaxy was measured down to \(\mu_g \sim 34\) mag/arcsec2, showing no significant upturn at large radius. The galaxy is well-approximated by a simple exponential disk model out to a radius of 70 kpc, corresponding to 18 disk scale lengths. The stellar halo mass fraction of this galaxy falls an order of magnitude below the expectations of theoretical predictions. Dragonfly data has also revealed the existence of seven large, low surface brightness objects in the field of M101, with effective radii of 10–30 arcsecond and central surface brightnesses of \(\mu_g \sim 25.5-27.5\) mag/arcsec2. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming these objects are companions to M101, the properties of these galaxies are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, it appears that several of the basic design trades that make large telescopes possible (in particular, obstructed pupils and reflective surfaces) define the fundamental systematic errors that make pushing to very low surface brightnesses so difficult.

References

  • Abraham, R. G., & van Dokkum, P. G. 2014, PASP, 126, 55

    Google Scholar 

  • Atkinson, A. M., Abraham, R. G., & Ferguson, A. M. N. 2013, ApJ, 765, 28

    Google Scholar 

  • Barker, M. K., Ferguson, A. M. N., Irwin, M., Arimoto, N., & Jablonka, P. 2009, AJ, 138, 1469

    Google Scholar 

  • Battaglia, G., Helmi, A., Morrison, H., et al. 2005, MNRAS, 364, 433

    Google Scholar 

  • Bland-Hawthorn, J., Vlajić, M., Freeman, K. C., & Draine, B. T. 2005, ApJ, 629, 239

    Google Scholar 

  • Carollo, D., Beers, T. C., Chiba, M., Norris, J. E., Freeman, K. C., Lee, Y. S., Ivezić, \v Z., Rockosi, C. M., et al. 2010, ApJ, 712, 692

    Google Scholar 

  • Chiboucas, K., Jacobs, B. A., Tully, R. B. & Karachentsev, I. D. 2013, ApJ, 146, 126

    Google Scholar 

  • Cooper, A. P., Cole, S., Frenk, C. S., White, S. D. M., Helly, J., Benson, A. J., De Lucia, G., Helmi, A., et al. 2010, MNRAS, 406, 744

    Google Scholar 

  • Cooper, A. P., D’Souza, R., Kauffmann, G., Wang, J., Boylan-Kolchin, M., Guo, Q., Frenk, C. S., & White, S. D. M. 2013, MNRAS, 434, 3348

    Google Scholar 

  • Courteau, S., Widrow, L. M., McDonald, M., Guhathakurta, P., Gilbert, K. M., Zhu, Y., Beaton, R. L., & Majewski, S. R. 2011, ApJ, 739, 20

    Google Scholar 

  • Dubinski, J., Mihos, J. C., & Hernquist, L. 1996, ApJ, 462, 576

    Google Scholar 

  • Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748

    Google Scholar 

  • Giuricin, G., Marinoni, C., Ceriani, L., & Pisani, A. 2000, ApJ, 543, 178

    Google Scholar 

  • Harris, W. E. 1996, AJ, 112, 1487

    Google Scholar 

  • Impey, C. D., Sprayberry, D., Irwin, M. J., & Bothun, G. D. 1996, ApJS, 105, 209

    Google Scholar 

  • Johnston, K. V., Bullock, J. S., Sharma, S., Font, A., Robertson, B. E., & Leitner, S. N. 2008, ApJ, 689, 936

    Google Scholar 

  • Karachentsev, I. D., Bautzmann, D., Neyer, F., et al. 2014, ArXiv e-print.

    Google Scholar 

  • Kormendy, J., Drory, N., Bender, R., & Cornell, M. E. 2010, ApJ, 723, 54

    Google Scholar 

  • Martínez-Delgado, D., Gabany, R. J., Crawford, K., Zibetti, S., Majewski, S. R., Rix, H.-W., Fliri, J., Carballo-Bello, J. A., et al. 2010, AJ, 140, 962

    Google Scholar 

  • McConnachie, A. W. 2012, AJ, 144, 4

    Google Scholar 

  • McConnachie, A. W., Irwin, M. J., Ibata, R. A., Dubinski, J., Widrow, L. M., Martin, N. F., Côté, P., Dotter, A. L., et al. 2009, Nature, 461, 66

    Google Scholar 

  • McMillan, P. J. 2011, MNRAS, 414, 2446

    Google Scholar 

  • Merritt, A., van Dokkum, P. & Abraham, R. G. 2014. ApJ (in press)

    Google Scholar 

  • Mihos, J. C., Harding, P., Feldmeier, J., & Morrison, H. 2005, ApJ, 631, L41

    Google Scholar 

  • Mihos, J. C., Keating, K. M., Holley-Bockelmann, K., Pisano, D. J., & Kassim, N. E. 2012, ApJ, 761, 186

    Google Scholar 

  • Mihos, J. C., Harding, P., Spengler, C. E., Rudick, C. S., & Feldmeier, J. J. 2013, ApJ, 762, 82

    Google Scholar 

  • Monachesi, A., Bell, E. F., Radburn-Smith, D. J., Vlajić, M., de Jong, R. S., Bailin, J., Dalcanton, J. J., Holwerda, B. W., et al. 2013, ApJ, 766, 106

    Google Scholar 

  • Moore, B., Lake, G., Quinn, T., & Stadel, J. 1999, MNRAS, 304, 465

    Google Scholar 

  • Naab, T., Johansson, P. H., Ostriker, J. P., & Efstathiou, G. 2007, ApJ, 658, 710

    Google Scholar 

  • Purcell, C. W., Bullock, J. S., & Zentner, A. R. 2008, MNRAS, 391, 550

    Google Scholar 

  • Radburn-Smith, D. J., de Jong, R. S., Seth, A. C., Bailin, J., Bell, E. F., Brown, T. M., Bullock, J. S., Courteau, S., et al. 2011, ApJS, 195, 18

    Google Scholar 

  • Romanishin, W., Strom, K. M., & Strom, S. E. 1983, ApJS, 53, 105

    Google Scholar 

  • Sersic, J. L. 1968, Atlas de galaxias australes (Cordoba, Argentina: Observatorio Astronomico, 1968)

    Google Scholar 

  • Slater, C. T., Harding, P., & Mihos, J. C. 2009, PASP, 121, 1267

    Google Scholar 

  • Tal, T. & van Dokkum, P. G. 2011, ApJ, 731, 89

    Google Scholar 

  • Tal, T., van Dokkum, P. G., Nelan, J., & Bezanson, R. 2009, AJ, 138, 1417

    Google Scholar 

  • Tamm, A., Tempel, E., Tenjes, P., Tihhonova, O., & Tuvikene, T. 2012, A&A, 546, A4

    Google Scholar 

  • Tanaka, M., Chiba, M., Komiyama, Y., Guhathakurta, P., & Kalirai, J. S. 2011, ApJ, 738, 150

    Google Scholar 

  • Toomre, A. & Toomre, J. 1972, ApJ, 178, 623

    Google Scholar 

  • van Dokkum, P. G. 2005, AJ, 130, 2647

    Google Scholar 

  • van Dokkum, P. G., Leja, J., Nelson, E. J., Patel, S., Skelton, R. E., Momcheva, I., Brammer, G., Whitaker, K. E., et al. 2013, ApJ, 771, L35

    Google Scholar 

  • van Dokkum, P. G., Abraham, R., & Merritt, A. 2014, ApJ, 782, L24

    Google Scholar 

  • Zaritsky, D., & White, S. D. M. 1994, ApJ, 435, 599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto G. Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abraham, R., van Dokkum, P., Merritt, A., Zhang, J. (2015). First Results from Project Dragonfly. In: Freeman, K., Elmegreen, B., Block, D., Woolway, M. (eds) Lessons from the Local Group. Springer, Cham. https://doi.org/10.1007/978-3-319-10614-4_36

Download citation

Publish with us

Policies and ethics