Skip to main content

Lessons from the Local Group (and Beyond) on Dark Matter

  • Conference paper
  • First Online:
Lessons from the Local Group

Abstract

The existence of exotic dark matter particles outside the standard model of particle physics constitutes a central hypothesis of the current standard model of cosmology (SMoC). Using a wide range of observational data I outline why this hypothesis cannot be correct for the real Universe. Assuming the SMoC to hold, (i) the two types of dwarf galaxies, the primordial dwarfs with dark matter and the tidal dwarf galaxies without dark matter, ought to present clear observational differences. But in fact there is no observational evidence for two separate families of dwarfs, neither in terms of their location relative to the baryonic Tully–Fisher relation nor in terms of their radius–mass relation. This result is illuminated by the arrangements of the satellite galaxies around host galaxies for which we have data: the arrangements in rotating disk-of-satellites, in particular around the Milky Way and Andromeda, has been found to be only consistent with most if not all dwarf satellite galaxies being tidal dwarf galaxies. The predicted large numbers of independently or in-group accreted, dark-matter-dominated primordial dwarfs are most inconspicuously absent around the Milky Way in particular. The highly symmetric structure of the entire Local Group too is inconsistent with its galaxies stemming from a stochastic merger-driven hierarchical buildup over cosmic time. (ii) Dynamical friction on the expansive and massive dark matter halos is not evident in the data: the satellite galaxies of the Milky Way with proper motion measurements have no infall solutions as they would merge with the MW if they have dark matter halos, and galaxy groups such as the M81 group are found to not merge on the short time scales implied if each galaxy has a dark matter halo. Taking the various lines of evidence together, the hypothesis that dynamically relevant exotic dark matter exists needs to be firmly rejected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Noteworthy is that the evidence provided in the year 2012 which are claimed to falsify the SMoC (Kroupa 2012) have, to this date, not been countered by the community but have instead been strengthened by recent progress (Ibata et al. 2014; Pawlowski et al. 2014; Kroupa 2014).

  2. 2.

    Although Kroupa (1997) suggested that the high \(M/L\) ratios of the dSph satellite galaxies may be due to repeated tidal shaping of the stellar phase-space velocity distribution function in a Newtonian universe, this process is unlikely to account for all dSph satellite galaxies because they are on very different orbits. Consequently, non-Newtonian dynamics is required to account for the observed dynamical masses of all dwarf satellites.

  3. 3.

    This would imply, essentially, that the table in my dining room would know it exists in the MW DM halo rather than in the DM halo of the Large Magellanic Cloud, in violation of the required fundamental property of DM particles which are supposed to not interact, apart maybe weakly, with the particles of the standard model of particle physics.

References

  • G. W. Angus. Is an 11eV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics? MNRAS, 394:527–532, March 2009.

    Google Scholar 

  • G. W. Angus and A. Diaferio. The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos. MNRAS, 417:941–949, October 2011.

    Google Scholar 

  • G. W. Angus, A. Diaferio, and P. Kroupa. Using dwarf satellite proper motions to determine their origin. MNRAS, 416:1401–1409, September 2011.

    Google Scholar 

  • G. W. Angus, A. Diaferio, B. Famaey, and K. J. van der Heyden. Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos. MNRAS, 436:202–211, November 2013.

    Google Scholar 

  • I. Banik. Galactic Archaeology with RAVE: Clues to the Formation of the Thick Disk. MSc thesis, Cambridge University, ArXiv e-prints, June 2014.

    Google Scholar 

  • J. E. Barnes. Dynamics of Galaxy Interactions. In R. C. Kennicutt, Jr., F. Schweizer, J. E. Barnes, D. Friedli, L. Martinet, and D. Pfenniger, editors, Saas-Fee Advanced Course 26: Galaxies: Interactions and Induced Star Formation, page 275, 1998.

    Google Scholar 

  • J. E. Barnes and L. Hernquist. Formation of dwarf galaxies in tidal tails. Nature, 360:715–717, December 1992.

    Google Scholar 

  • P. S. Behroozi, R. H. Wechsler, and C. Conroy. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8. ApJ, 770:57, June 2013.

    Google Scholar 

  • J. Binney and M. Merrifield. Galactic Astronomy. Princeton University Press, 1998.

    Google Scholar 

  • D. L. Block, F. Bournaud, F. Combes, R. Groess, P. Barmby, M. L. N. Ashby, G. G. Fazio, M. A. Pahre, and S. P. Willner. An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy. Nature, 443:832–834, October 2006.

    Google Scholar 

  • F. Bournaud. Tidal Dwarf Galaxies and Missing Baryons. Advances in Astronomy, 2010, 2010.

    Google Scholar 

  • F. Bournaud, P.-A. Duc, and E. Emsellem. High-resolution simulations of galaxy mergers: resolving globular cluster formation. MNRAS, 389:L8–L12, September 2008.

    Google Scholar 

  • R. A. Casas, V. Arias, K. Peña Ramírez, and P. Kroupa. Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: maps of orbits. MNRAS, 424:1941–1951, August 2012.

    Google Scholar 

  • K. Chiboucas, B. A. Jacobs, R. B. Tully, and I. D. Karachentsev. Confirmation of Faint Dwarf Galaxies in the M81 Group. AJ, 146:126, November 2013.

    Google Scholar 

  • R. G. Clowes, K. A. Harris, S. Raghunathan, L. E. Campusano, I. K. Söchting, and M. J. Graham. A structure in the early Universe at \(z \sim 1.3\) that exceeds the homogeneity scale of the R-W concordance cosmology. MNRAS, 429:2910–2916, March 2013.

    Google Scholar 

  • J. Dabringhausen and P. Kroupa. Dwarf elliptical galaxies as ancient tidal dwarf galaxies. MNRAS, 429:1858–1871, March 2013.

    Google Scholar 

  • R. Delgado-Serrano, F. Hammer, Y. B. Yang, M. Puech, H. Flores, and M. Rodrigues. How was the Hubble sequence 6 Gyr ago? A&A, 509:A78, January 2010.

    Google Scholar 

  • M. J. Disney, J. D. Romano, D. A. Garcia-Appadoo, A. A. West, J. J. Dalcanton, and L. Cortese. Galaxies appear simpler than expected. Nature, 455:1082–1084, October 2008.

    Google Scholar 

  • P.-A. Duc, S. Paudel, R. M. McDermid, J.-C. Cuillandre, P. Serra, F. Bournaud, M. Cappellari, and E. Emsellem. Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations. MNRAS, 440:1458–1469, March 2014.

    Google Scholar 

  • B. G. Elmegreen, M. Kaufman, and M. Thomasson. An interaction model for the formation of dwarf galaxies and 10 exp 8 solar mass clouds in spiral disks. ApJ, 412:90–98, July 1993.

    Google Scholar 

  • B. Famaey and S. S. McGaugh. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Reviews in Relativity, 15:10, September 2012.

    Google Scholar 

  • M. Fernández Lorenzo, J. Sulentic, L. Verdes-Montenegro, J. Blasco-Herrera, M. Argudo-Fernández, J. Garrido, P. Ramírez-Moreta, J. E. Ruiz, S. Sánchez-Expósito, and J. D. Santander-Vela. Are (pseudo)bulges in isolated galaxies actually primordial relics? ArXiv e-prints, May 2014.

    Google Scholar 

  • I. Ferrero, M. G. Abadi, J. F. Navarro, L. V. Sales, and S. Gurovich. The dark matter haloes of dwarf galaxies: a challenge for the Λ cold dark matter paradigm? MNRAS, 425:2817–2823, October 2012.

    Google Scholar 

  • G. Gentile, B. Famaey, F. Combes, P. Kroupa, H. S. Zhao, and O. Tiret. Tidal dwarf galaxies as a test of fundamental physics. A&A, 472:L25–L28, September 2007.

    Google Scholar 

  • F. Hammer, Y. Yang, S. Fouquet, M. S. Pawlowski, P. Kroupa, M. Puech, H. Flores, and J. Wang. The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group. MNRAS, 431:3543–3549, June 2013.

    Google Scholar 

  • R. A. Ibata, G. F. Lewis, A. R. Conn, M. J. Irwin, A. W. McConnachie, S. C. Chapman, M. L. Collins, M. Fardal, A. M. N. Ferguson, N. G. Ibata, A. D. Mackey, N. F. Martin, J. Navarro, R. M. Rich, D. Valls-Gabaud, and L. M. Widrow. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature, 493:62–65, January 2013.

    Google Scholar 

  • R. A. Ibata, N. G. Ibata, G. F. Lewis, N. F. Martin, A. Conn, P. Elahi, V. Arias, and N. Fernando. A Thousand Shadows of Andromeda: Rotating Planes of Satellites in the Millennium-II Cosmological Simulation. ApJL, 784:L6, March 2014.

    Google Scholar 

  • J. Kormendy, N. Drory, R. Bender, and M. E. Cornell. Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation by Hierarchical Clustering. ApJ, 723:54–80, November 2010.

    Google Scholar 

  • P. Kroupa. Dwarf spheroidal satellite galaxies without dark matter. NA, 2:139–164, July 1997.

    Google Scholar 

  • P. Kroupa. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology. PASA, 29:395–433, June 2012.

    Google Scholar 

  • P. Kroupa. Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation. Canadian Journal of Physics, in press, 2014.

    Google Scholar 

  • P. Kroupa, C. Theis, and C. M. Boily. The great disk of Milky-Way satellites and cosmological sub-structures. A&A, 431:517–521, February 2005.

    Google Scholar 

  • P. Kroupa, B. Famaey, K. S. de Boer, J. Dabringhausen, M. S. Pawlowski, C. M. Boily, H. Jerjen, D. Forbes, G. Hensler, and M. Metz. Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation. A&A, 523:A32, November 2010.

    Google Scholar 

  • P. Kroupa, M. Pawlowski, and M. Milgrom. The Failures of the Standard Model of Cosmology Require a New Paradigm. International Journal of Modern Physics D, 21:30003, December 2012.

    Google Scholar 

  • Y. Lu, H. J. Mo, N. Katz, and M. D. Weinberg. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation. MNRAS, 421:1779–1796, April 2012.

    Google Scholar 

  • F. Lüghausen, B. Famaey, and P. Kroupa. A census of the expected properties of classical Milky Way dwarfs in Milgromian dynamics. ArXiv e-prints, April 2014a.

    Google Scholar 

  • F. Lüghausen, B. Famaey, and P. Kroupa. Phantom of RAMSES (POR): A new Milgromian dynamics N-body code. ArXiv e-prints, May 2014b.

    Google Scholar 

  • S. McGaugh and M. Milgrom. Andromeda Dwarfs in Light of MOND. II. Testing Prior Predictions. ApJ, 775:139, October 2013.

    Google Scholar 

  • S. S. McGaugh and J. Wolf. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation. ApJ, 722:248–261, October 2010.

    Google Scholar 

  • M. Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ, 270:365–370, July 1983.

    Google Scholar 

  • M. Milgrom. The modified dynamics as a vacuum effect. Physics Letters A, 253:273–279, March 1999.

    Google Scholar 

  • M. Milgrom. The Mond Limit from Spacetime Scale Invariance. ApJ, 698:1630–1638, June 2009.

    Google Scholar 

  • M. S. Pawlowski and P. Kroupa. The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. MNRAS, 435:2116–2131, November 2013.

    Google Scholar 

  • M. S. Pawlowski and P. Kroupa. The VPOS of the Milky Way Attains New Members. ApJ, in press, 2014.

    Google Scholar 

  • M. S. Pawlowski, P. Kroupa, and K. S. de Boer. Making counter-orbiting tidal debris. The origin of the Milky Way disc of satellites? A&A, 532:A118, August 2011.

    Google Scholar 

  • M. S. Pawlowski, J. Pflamm-Altenburg, and P. Kroupa. The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. MNRAS, 423:1109–1126, June 2012a.

    Google Scholar 

  • M. S. Pawlowski, P. Kroupa, G. Angus, K. S. de Boer, B. Famaey, and G. Hensler. Filamentary accretion cannot explain the orbital poles of the Milky Way satellites. MNRAS, 424:80–92, July 2012b.

    Google Scholar 

  • M. S. Pawlowski, P. Kroupa, and H. Jerjen. Dwarf galaxy planes: the discovery of symmetric structures in the Local Group. MNRAS, 435:1928–1957, November 2013.

    Google Scholar 

  • M. S. Pawlowski, B. Famaey, H. Jerjen, D. Merritt, P. Kroupa, J. Dabringhausen, F. Lüghausen, D. A. Forbes, G. Hensler, F. Hammer, M. Puech, S. Fouquet, H. Flores, and Y. Yang. Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. MNRAS, in press, June 2014.

    Google Scholar 

  • S. Ploeckinger, G. Hensler, S. Recchi, N. Mitchell, and P. Kroupa. Chemo-dynamical evolution of tidal dwarf galaxies. I. Method and IMF dependence. MNRAS, 437:3980–3993, February 2014.

    Google Scholar 

  • S. Recchi, C. Theis, P. Kroupa, and G. Hensler. The early evolution of tidal dwarf galaxies. A&A, 470:L5–L8, July 2007.

    Google Scholar 

  • S. Recchi, F. Calura, and P. Kroupa. The chemical evolution of galaxies within the IGIMF theory: the [α/Fe] ratios and downsizing. A&A, 499:711–722, June 2009.

    Google Scholar 

  • F. Shankar, S. Mei, M. Huertas-Company, J. Moreno, F. Fontanot, P. Monaco, M. Bernardi, A. Cattaneo, R. Sheth, R. Licitra, L. Delaye, and A. Raichoor. Environmental dependence of bulge-dominated galaxy sizes in hierarchical models of galaxy formation. Comparison with the local Universe. MNRAS, 439:3189–3212, February 2014.

    Google Scholar 

  • J. S. Speagle, C. L. Steinhardt, P. L. Capak, and J. D. Silverman. A Highly Consistent Framework for the Evolution of the Star-Forming “Main Sequence” from z˜0-6. ArXiv e-prints, May 2014.

    Google Scholar 

  • R. C. Thomson, S. Laine, and A. Turnbull. Towards an Interaction Model of M81, M82 and NGC 3077. In J. E. Barnes and D. B. Sanders, editors, Galaxy Interactions at Low and High Redshift, volume 186 of IAU Symposium, page 135, 1999.

    Google Scholar 

  • A. Toomre. Mergers and Some Consequences. In B. M. Tinsley and R. B. G. Larson, D. Campbell, editors, Evolution of Galaxies and Stellar Populations, page 401, 1977.

    Google Scholar 

  • M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. F. Snyder, S. Bird, D. Nelson, and L. Hernquist. Properties of galaxies reproduced by a hydrodynamic simulation. ArXiv e-prints, May 2014a.

    Google Scholar 

  • M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. F. Snyder, D. Nelson, and L. Hernquist. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. ArXiv e-prints, May 2014b.

    Google Scholar 

  • T. Weinzirl, S. Jogee, S. Khochfar, A. Burkert, and J. Kormendy. Bulge n and B/T in High-Mass Galaxies: Constraints on the Origin of Bulges in Hierarchical Models. ApJ, 696:411–447, May 2009.

    Google Scholar 

  • M. Wetzstein, T. Naab, and A. Burkert. Do dwarf galaxies form in tidal tails? MNRAS, 375:805–820, March 2007.

    Google Scholar 

  • X. Wu and P. Kroupa. Galactic rotation curves, the baryon-to-dark-halo-mass relation and their space-time scale invariance. MNRAS, submitted, 2014.

    Google Scholar 

  • Y. Yang, F. Hammer, S. Fouquet, H. Flores, M. Puech, M. S. Pawlowski, and P. Kroupa. Reproducing properties of MW dSphs as descendants of DM-free TDGs. ArXiv e-prints, May 2014.

    Google Scholar 

  • M. S. Yun. Tidal Interactions in M81 Group. In J. E. Barnes and D. B. Sanders, editors, Galaxy Interactions at Low and High Redshift, volume 186 of IAU Symposium, page 81, 1999.

    Google Scholar 

  • H. Zhao, B. Famaey, F. Lüghausen, and P. Kroupa. Local Group timing in Milgromian dynamics. A past Milky Way-Andromeda encounter at \(z> 0.8\). A&A, 557:L3, September 2013.

    Google Scholar 

Download references

Acknowledgements

I thank Ken Freeman for organizing this conference on the Seychelles. It will remain memorable for decades to come. I also thank David Block and Bruce Elmegreen for being around so actively and for so many years such that we could have this splendidly luxurious meeting to honor both of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kroupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kroupa, P. (2015). Lessons from the Local Group (and Beyond) on Dark Matter. In: Freeman, K., Elmegreen, B., Block, D., Woolway, M. (eds) Lessons from the Local Group. Springer, Cham. https://doi.org/10.1007/978-3-319-10614-4_28

Download citation

Publish with us

Policies and ethics