Skip to main content

Supercritical Fluid Processing for the Recovery of Bioactive Compounds from Food Industry By-Products

  • Chapter
  • First Online:
High Pressure Fluid Technology for Green Food Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

By-products of food industry, especially wine industry, fruit and vegetable processing industry, oil industry, milling industry, seafood processing industry are rich in bioactive compounds. These compounds are mainly polyunsaturated fatty acids (PUFAs), tocopherols, phytosterols, squalene, carotenoids and polyphenols. Supercritical carbon dioxide (SCCO2) extraction of specialty oils rich in bioactive compounds, fractionation of specialty oils or by-products to enrich the bioactive compounds, supercritical fluid extraction (SFE) of carotenoids and either supercritical (SFE) or subcritical fluid extraction (SCFE), and supercritical antisolvent extraction (SAE) and fractionation (SAF) of polyphenols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adil Ä°H, Çetin HÄ°, Yener ME et al (2007) Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. J Supercrit Fluids 43:55–63

    Article  CAS  Google Scholar 

  • Adil Ä°H, Yener ME, Bayındırlı A (2008) Extraction of total phenolics of sour cherry pomace by high pressure solvent and subcritical fluid, and determination of the antioxidant activities of the extracts. Sep Sci Technol 45:1091–1110

    Article  CAS  Google Scholar 

  • Agostini E, Bertussi RA, Agostini G et al (2012) Supercritical extraction of vinification residues: fatty acids, α-tocopherol, and phenolic compounds in the oil seeds from different varieties of grape. Scientific World J 2012:1–9

    Article  CAS  Google Scholar 

  • Akgün N (2011) Separation of squelene from olive oil deodorizer distillate using supercritical fluids. Eur J Lipid Sci Technol 113:1558–1565

    Article  CAS  Google Scholar 

  • Al-Darmaki N, Lu T, Al-Duri B et al (2012) Isothermal and temperature gradient supercritical fluid extraction and fractionation of squelene from palm fatty acid distillate using compressed carbon dioxide. J Supercrit Fluids 61:108–114

    Article  CAS  Google Scholar 

  • Amiguet VT, Kramp KL, Mao JQ et al (2012) Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chem 130:853–858

    Article  CAS  Google Scholar 

  • Ashraf-Khorassanı M, Taylor LT (2004) Sequential fractionation of grape seeds into oils, polyphenols and procyanidins via single system employing CO2-based fluids. J Agric Food Chem 52:2440–2444

    Article  CAS  Google Scholar 

  • Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality and health effects. Eur Food Res Technol 219:561–571

    Article  CAS  Google Scholar 

  • Berna A, Cháfer A, Montón JB (2001a) High-pressure solubility data of system resveratrol (3) + ethanol (2) + CO2 (1). J Supercrit Fluids 19:133–139

    Article  CAS  Google Scholar 

  • Berna A, Cháfer A, Montón JB et al (2001b) High-pressure solubility data of system ethanol (1) + catechin (2) + CO2 (3). J Supercrit Fluids 20:157–162

    Article  CAS  Google Scholar 

  • Bernado-Gil G, Oneto C, Antunes P (2001) Extraction of lipids from cherry seed oil using supercritical carbon dioxide. Eur Food Res Technol 212:170–174

    Article  Google Scholar 

  • Bernardo-Gil MG, Cardoso Lopes LM (2004) Supercritical fluid extraction of Cucurbita ficifolia seed oil. Eur Food Res Technol 219:593–597

    Article  CAS  Google Scholar 

  • Bravi M, Spinoglio F, Vardone N et al (2007) Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2: optimization of extraction conditions. J Food Eng 78:488–493

    Article  CAS  Google Scholar 

  • Bueno JM, Ramos-Escudero F, Saez-Plaza P et al (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part I. General considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem 55:102–123

    Article  CAS  Google Scholar 

  • Cao X, Ito Y (2003) Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. J Chromatog A 1021:117–124

    Article  CAS  Google Scholar 

  • Cardoso de Oliveira R, Rossi RM, Gimenes ML et al (2013) Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by bayesian interference. Grassa Y Aceites 64:400–406

    Article  CAS  Google Scholar 

  • Cathpole OJ, Grey JB, Mitchell KA et al (2004) Supercritical antisolvent fractionation of propolis tincture. J Supercrit Fluids 29:97–106

    Article  CAS  Google Scholar 

  • Catchpole OJ, Durling NE, Grey JB et al (2009a) Supercritical antisolvent fractionation of plant extracts. In: Duarte ARC, Duarte CMM (eds) Current trends of supercritical fluid technology in pharmaceutical, nutraceutical and food processing industries. Bentham, Bussum, pp 71–79

    Google Scholar 

  • Catchpole OJ, Tallon SJ, Eltringham WE et al (2009b) The extraction and fractionation of speciality lipids using near critical fluids. J Supercrit Fluids 47:591–597

    Article  CAS  Google Scholar 

  • Cháfer A, Berna A, Montón JB et al (2002) High-pressure solubility data of system ethanol (1) + epicatechin (2) + CO2 (3). J Supercrit Fluids 24:103–109

    Article  Google Scholar 

  • Cháfer A, Fornari T, Berna A et al (2004) Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modeling. J Supercrit Fluids 32:89–96

    Article  CAS  Google Scholar 

  • Cháfer A, Pascual-Martí MC, Salvador A et al (2005) Supercritical fluid extraction and HPLC determination of relevant polyphenolic compounds in grape skins. J Sep Sci 28:2050–2056

    Article  CAS  Google Scholar 

  • Cháfer A, Fornari T, Stateva RP et al (2007) Solubility of the natural antioxidant gallic acid in supercritical CO2 + ethanol as a cosolvent. J Chem Eng Data 52:116–121

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Shine K (2013) Oil seeds. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 331–376

    Google Scholar 

  • Chang CJ, Chang YF, Lee HZ et al (2000) Supercritical carbon dioxide extraction of high-value substances from soybean oil deodorizer distillate. Ind Eng Chem Res 39:4521–4525

    Article  CAS  Google Scholar 

  • Choi ES, Noh MJ, Yoo KP (1998) Solubilities of o-, m- and p-coumeric acid isomers in carbon dioxide at 308.15–323.15 K and 8.5–25 MPa. J Chem Eng Data 43:6–8

    Article  CAS  Google Scholar 

  • Diaz-Reinoso B, Moure A, Dominguez H et al (2006) Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem 54:2441–2469

    Article  CAS  Google Scholar 

  • Dunford NT, King JW (2000) Phytosterol enrichment of rice bran oil by a supercritical carbon dioxide fractionation technique. J Food Sci 65:1395–1399

    Article  CAS  Google Scholar 

  • Dunford NT, Teel JA, King JW (2003) A continuous countercurrent supercritical fluid deacidification process for phtosterol ester fortification in rice bran oil. Food Res Int 36:175–181

    Article  CAS  Google Scholar 

  • Eisenmenger M, Dunford NT (2008) Bioactive components of commertial and supercritical carbon dioxide processed wheat germ oil. JAOCS 85:55–61

    CAS  Google Scholar 

  • Eisenmenger M, Dunford NT, Eller F et al (2006) Pilot-scale supercritical carbon dioxide extraction and fractionation of wheat germ oil. JAOCS 83:863–868

    CAS  Google Scholar 

  • Eltringham W, Catchpole O (2008) Processing of fish oils by supercritical fluids. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 141–213

    Google Scholar 

  • Fang T, Goto M, Sasaki M et al (2008) Extraction and purification of natural tocopherols by supercritical CO2. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 103–140

    Google Scholar 

  • Félix-Valenzuela L, Higuera-Ciapara I, Goycoolea-Valencia F (2001) Supercritical CO2/ethanol extraction of astaxanthin from crab (Callinectes sapidus) shell waste. J Food Process Eng 24:101–112

    Article  Google Scholar 

  • Ferdosh S, Sarker MZI, Rahman NNNA et al (2013) Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean J Chem Eng 30:1466–1472

    Article  CAS  Google Scholar 

  • Ferraro V, Cruz IB, Jorge RF et al (2010) Valorization of natural extracts from marine sources focused on marine by-products: a review. Food Res Int 43:2221–2233

    Article  Google Scholar 

  • Fiori L, Salona M, Tosi P et al (2012) Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids. Food Chem 134:1088–1095

    Article  CAS  Google Scholar 

  • Floris T, Filippino G, Scrugli S et al (2010) Antioxidant compounds recovery from grape residues by supercritical antisolvent assisted process. J Supercrit Fluids 54:165–170

    Article  CAS  Google Scholar 

  • Fornari T, Torres CF, Señoráns FJ et al (2009) Simulation and optimization of supercritical fluid purification of phtosterol esters. AIChE J 55:1023–1029

    Article  CAS  Google Scholar 

  • Ge Y, Ni Y, Yan H et al (2002a) Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J Food Sci 67:239–243

    Article  CAS  Google Scholar 

  • Ge Y, Yan H, Hui B et al (2002b) Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J Agric Food Chem 50:685–689

    Article  CAS  Google Scholar 

  • Gelmez N, Kıncal NS, Yener ME (2009) Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents and antioxidant activities of the extracts. J Supercrit Fluids 48:217–224

    Article  CAS  Google Scholar 

  • Gómez AM, de la Ossa EM (2000) Quality of wheat germ oil extracted by liquid and supercritical carbon dioxide. JAOCS 77:969–974

    Google Scholar 

  • Gómez AM, López CP, de la Ossa EM (1996) Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: a comparison with conventional solvent extraction. Chem Eng J 61:227–231

    Google Scholar 

  • Gracia I, Rodríguez JF, de Lucas A et al (2011) Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk. J Supercrit Fluids 59:72–77

    Article  CAS  Google Scholar 

  • Gurdial GS, Foster NR, Jimmy Yun SL et al (1993) Phase behaviour of supercritical fluid-entrainer systems. In: Kiran E, Brennecke JF (eds) Supercritical fluid engineering science: fundamentals and applications, ACS Symposium Series. ACS, Washington, pp 34–39

    Google Scholar 

  • Guyot S, Marnet N, Laraba D et al (1998) Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a french cider apple variety (Malus domestica Var. Kermerrien). J Agric Food Chem 46:1698–1705

    Article  CAS  Google Scholar 

  • Güçlü-ÃœstündaÄŸ Ö, Temelli F (2000) Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides and fatty acid esters in supercritical carbon dioxide. Ind Eng Chem Res 39:4756–4766

    Article  CAS  Google Scholar 

  • Güçlü-ÃœstündaÄŸ Ö, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31:235–253

    Article  CAS  Google Scholar 

  • Halvorsen BL, Holte K, Myhrstad MCW et al (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471

    CAS  Google Scholar 

  • Herrero M, Cifuentes A, Ibáñez E (2006) Sub- and supercritical extraction of functional ingredients from natural sources: plants, food-by-products, algea and microalgae: a review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  • Herrero M, Mendiola JA, Cifuentes A et al (2010) Supercritical fluid extraction: recent advances and applications. J Chromatog A 1217:2495–2511

    Article  CAS  Google Scholar 

  • Herrero M, Castro-Puayana M, Mendiola JA et al (2013) Compressed fluids for the extraction of bioactive compounds. Trends Anal Chem 43:67–83

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nut 46:185–196

    Article  CAS  Google Scholar 

  • Hrabovski N, Sinadinović-Fiser S, Nikolovski B et al (2012) Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur J Lipid Sci Technol 114:1204–1211

    Article  CAS  Google Scholar 

  • Huang W, Li Z, Niu H et al (2008) Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J Food Eng 89:298–302

    Article  CAS  Google Scholar 

  • Ibáñez E, Palacios J, Señorans FJ et al (2000) Isolation and separation of tocopherols from olive by-products with supercritical fluids. JAOCS 77:187–190

    Google Scholar 

  • Junior MRM, Leite AV, Dragano NRV (2010) Supercritical fluid extraction and stabilization of phenolic compounds from natural sources-Review (Supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J 4:51–60

    Article  CAS  Google Scholar 

  • Kao TH, Chen BH (2013) Fruits and vegatables. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 517–557

    Google Scholar 

  • Kassama LS, Shi J, Mittal GS et al (2008) Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Sep Pur Tech 60:278–284

    Article  CAS  Google Scholar 

  • Kim HJ, Lee SB, Park KA et al (1999) Characterization of extraction and separation of rice bran oil rich in EFA using SFE process. Sep Pur Technol 15:1–8

    Article  CAS  Google Scholar 

  • King JW, Dunford NT (2002) Phetosterol-enriched triglyceride fractions from vegetable oil deodorizer distillates utilizing supercritical fluid fractionation technology. Sep Sci Technol 37:451–462

    Article  CAS  Google Scholar 

  • Ko SN, Ha TY, Hong SI et al (2012) Enrichment of tocols from rice germ oil using supercritical carbon dioxide. Int J Food Sci Technol 47:761–767

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (2001) Antioxidant activity of some roasted foods. Food Chem 72:223–229

    Article  CAS  Google Scholar 

  • Krings U, El-Saharty YS, El-Zeany BA et al (2000) Antioxidant activity of extracts from roasted wheat germ. Food Chem 71:91–95

    Article  CAS  Google Scholar 

  • Krings U, Johansson L, Zorn H et al (2006) In vitro DNA-protective activity of roasted wheat germ and fractions thereof. Food Chem 97:712–718

    Article  CAS  Google Scholar 

  • Krishna JG, Chandrasekaran M (2013) Biochemical and nutritional aspects of food processing by-products. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 167–185

    Google Scholar 

  • Kuk MS, Down MK (1998) Supercritical CO2 extraction of rice bran. JAOCS 75:623–628

    CAS  Google Scholar 

  • Kumar RS, Chandrasekaran M (2013) Beverages. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 589–614

    Google Scholar 

  • Leantowicz H, Gorinstein S, Lojek A et al (2002) Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. J Nutr Biochem 13:603–610

    Article  Google Scholar 

  • Létisse M, Comeau L (2008) Enrichment of eicosapentaenoic and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. J Sep Sci 31:1374–1380

    Article  CAS  Google Scholar 

  • Liu G, Xu X, Hao Q et al (2009) Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT-Food Sci Technol 42:1491–1495

    Article  CAS  Google Scholar 

  • Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants form wine industry by-products. Biores Technol 92:201–208

    Article  CAS  Google Scholar 

  • Machado BAS, Preira CG, Nunes SB et al (2013) Supercritical fluid extraction using CO2: main applications and future perspectives. Sep Sci Technol 48:2741–2760

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  • Mitra P, Ramaswamy HS, Chang KS (2009) Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. J Food Eng 95:208–213

    Article  CAS  Google Scholar 

  • Moure A, Cruz JM, Franco D et al (2001) Natural antioxidants from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Muragan K, Chandrasekaran VS, Karthikeyan P et al (2013) Current state-of-the-art of food processing by-products. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 35–61

    Google Scholar 

  • Murga R, Ruiz R, Beltrán S et al (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48:3408–3412

    Article  CAS  Google Scholar 

  • Murga R, Sanz MT, Beltrán S et al (2002) Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide. J Supercrit Fluids 23:113–121

    Article  CAS  Google Scholar 

  • Murga R, Sanz MT, Beltrán S et al (2003) Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. J Supercrit Fluids 27:239–245

    Article  CAS  Google Scholar 

  • Murga R, Sanz MT, Beltrán S et al (2004) Solubility of syringic and vanillic acids in supercritical carbon dioxide. J Chem Eng Data 49:779–782

    Article  CAS  Google Scholar 

  • Nobre BP, Palavra AF, Pessao LP et al (2009) Supercritical CO2 extraction of trans-lycopene from Portugese tomato industrial waste. Food Chem 116:680–685

    Article  CAS  Google Scholar 

  • Ollanketo M, Hartonen K, Riekkola ML et al (2001) Supercritical carbon dioxide extraction of lycopene in tomato skins. Eur Food Res Technol 21:561–565

    Article  Google Scholar 

  • Oreopoulou V, Tzia C (2007) Utilization of plant by-products for the recovery of proteins, dietary fiber, antioxidants and colorants. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 209–232

    Chapter  Google Scholar 

  • Özkal SG, Yener ME, Bayındırlı L (2005a) Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. J Supercrit Fluids 35:119–127

    Article  CAS  Google Scholar 

  • Özkal SG, Yener ME, Bayındırlı L (2005b) Response surfaces of apricot kernel oil yield in supercritical carbon dioxide. Food Sci Technol 38:611–616

    Google Scholar 

  • Özkal SG, Yener ME, Bayındırlı L (2006) The solubility of apricot kernel oil in supercritical carbon dioxide. Int J Food Sci Technol 41:399–404

    Article  CAS  Google Scholar 

  • Palma M, Taylor LT (1999a) Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. J Chromotogr A 849:117–124

    Article  CAS  Google Scholar 

  • Palma M, Taylor LT (1999b) Fractional extraction of compounds from grape seeds by supercritical fluid extraction and analysis for antimicrobial and agrochemical activities. J Agric Food Chem 47:5044–5048

    Article  CAS  Google Scholar 

  • Panfili G, Cinquanta L, Fratianni A et al (2003) Extraction of wheat germ oil by supercritical CO2: oil and defatted cake characterization. JAOCS 80:157–161

    CAS  Google Scholar 

  • Pascual-Martí MC, Salvador A, Cháfer A et al (2001) Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta 54:735–740

    Article  Google Scholar 

  • Passos CP, Silva RM, Da Silva FA et al (2009) Enhancement of the supercritical fluid extraction of grape seed oil by using enzymatically pre-treated seed. J Supercrit Fluids 48:225–229

    Article  CAS  Google Scholar 

  • Passos CP, Silva RM, Da Silva FA et al (2010) Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil. Effect of operating conditions upon oil composition and antioxidant capacity. Chem Eng J 160:634–640

    Article  CAS  Google Scholar 

  • Pereira CG, Angela M, Meireles A (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 2:340–372

    Article  CAS  Google Scholar 

  • Perretti G, Miniati E, Montanari L et al (2003) Improving the value of rice by-products. J Supercrit Fluids 26:63–71

    Article  CAS  Google Scholar 

  • Pinelo A, Ruiz-Rodríguez A, Sineiro J et al (2007) Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. European Food Res Technol 22:199–205

    Article  CAS  Google Scholar 

  • Prado JM, Dalmolin I, Carareto NDD et al (2012) Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. J Food Eng 109:249–257

    Article  CAS  Google Scholar 

  • Reverchon E, de Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    Article  CAS  Google Scholar 

  • Rozzi NL, Singh RK, Vierling RA et al (2002) Supercritical fluid extraction of lycopene from tomato processing by-products. J Agric Food Chem 50:2638–2643

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez N, de Diego S, Beltrán S et al (2008) Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. J Supercrit Fluids 47:215–226

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez N, Beltrán S, Jaime I et al (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovative Food Sci Eng Tech 11:1–12

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez N, de Diego S, Beltrán S et al (2012) Supercritical fluid extraction of fish oil from fish by-products: a comparison with other extraction methods. J Food Eng 109:238–248

    Article  CAS  Google Scholar 

  • Russ W, Schnappinger M (2007) Waste related to the food industry. A challenge in material loops. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 209–232

    Google Scholar 

  • Sabio E, Lazano M, Montero de Espinosa V et al (2003) Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res 42:6641–6646

    Article  CAS  Google Scholar 

  • Salgın U, Korkmaz H (2011) A green separation process for recovery of healthy oil from pumpkin seed. J Supercrit Fluids 58:239–248

    Article  CAS  Google Scholar 

  • Sánchez-Camargo AP, Martinez-Correa HA, Paviani LC et al (2011a) Supercritical CO2 extraction of lipids and astaxathin from redspotted shrimp waste (Farfantepenaeus paulensis). J Supercrit Fluids 56:164–173

    Article  CAS  Google Scholar 

  • Sánchez-Camargo AP, Meireles MAA, Lopes BLF et al (2011b) Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J Food Eng 102:87–93

    Article  CAS  Google Scholar 

  • Sánchez-Camargo AP, Meireles MAA, Freira ALK et al (2012) Extraction of ω-3 fatty acids and astaxantin from Brazilian redspotted shrimp waste using supercritical CO2 + ethanol mixtures. J Supercrit Fluids 61:71–77

    Article  CAS  Google Scholar 

  • Sánchez-Vicente Y, Cabañaz A, Renuncio JAR et al (2009) Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. J Supercrit Fluids 49:167–173

    Article  CAS  Google Scholar 

  • Sarmento CMP, Ferreira SRS, Hense H (2006) Supercritical fluid extraction (SFE) of rice bran oil to obtain fractions enriched with tocopherols and tocotrienols. Brazilian J Chem Eng 23:243–249

    Article  CAS  Google Scholar 

  • Schieber A, Stintzing FC, Carle R (2001) By-products of plant processing as a source of functional compounds-recent developments. Trends Food Sci Technol 12:401–413

    Article  CAS  Google Scholar 

  • Schwartz H, Ollilainen V, Piironen V et al (2008) Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J Food Comp Anal 21:152–161

    Article  CAS  Google Scholar 

  • Serra AT, Seabra IJ, Braga MEM et al (2010) Processing cherries (Prumus avium) using supercritical fluid technology. Part 1: recovery of extracts fractions rich in bioactive compounds. J Supercrit Fluids 55:185–191

    Google Scholar 

  • Shen Z, Palmer MV, Ting SST et al (1996) Pilot scale extraction of rice bran oil with dense carbon dioxide. J Agric Food Chem 44:3033–3039

    Article  CAS  Google Scholar 

  • Shi J, Nawaz H, Pohorly J et al (2005) Extraction of polyphenolics from plant materials for functional foods-engineering and technology. Food Reviews Int 21:139–166

    Article  CAS  Google Scholar 

  • Shi J, Mittal G, Kim E et al (2007) Solubility of carotenoids in supercritical CO2. Food Reviews Int 23:341–371

    Article  CAS  Google Scholar 

  • Shi C, Chun Y, Xue SJ et al (2009) Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J Food Eng 93:431–436

    Article  CAS  Google Scholar 

  • Snyder JM, King JW, Taylor SL et al (1999) Concentration of phytosterols for analysis by supercritical fluid extraction. JAOCS 76:717–721

    CAS  Google Scholar 

  • Sovová H, Stateva RP, Galushko AA (2001) Solubility of β-carotene in supercritical CO2 and effect of entrainers. J Supercrit Fluids 21:195–203

    Article  Google Scholar 

  • Sparks D, Hernandez R, Zappi M et al (2006) Extraction of rice bran oil using supercritical carbon dioxide and propane. JAOCS 83:885–891

    CAS  Google Scholar 

  • Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrots using canola oil as a continuous co-solvent. J Supercrit Fluids 37:397–408

    Article  CAS  Google Scholar 

  • Suresh PV, Prabhu GN (2013) Seafood. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 685–736

    Google Scholar 

  • Åžanal Ä°S, Güvenç A, Salgın U et al (2004) Recycling of apricot pomace by supercritical CO2 extraction. J Supercrit Fluids 32:221–230

    Article  CAS  Google Scholar 

  • Åžanal Ä°S, Bayraktar E, MehmetoÄŸlu Ãœ et al (2005) Determination of optimum conditions for SC-(CO2 + ethanol) extraction of β-carotene from apricot pomace using response surface methodology. J Supercrit Fluids 34:331–338

    Article  CAS  Google Scholar 

  • Temelli F (2009) Perspectives on supercritical fluid processing of fats and oils. J Supercrit Fluids 47:583–590

    Article  CAS  Google Scholar 

  • Temelli F, Saldana MDA, Moquin PHL et al (2008) Supercritical fluid extraction of specialty oils. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 51–101

    Google Scholar 

  • Tomás-Barberán FA, Gil MI, Cremin P et al (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  CAS  Google Scholar 

  • Topal U, Sasaki M, Goto M et al (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610

    Article  CAS  Google Scholar 

  • Torres CF, Fornari T, Torrelo G et al (2009) Production of pytosterol esters from soybean oil deodorizer distillates. Eur J Lipid Sci Technol 111:459–463

    Article  CAS  Google Scholar 

  • Tsagaraki E, Lazarides HN, Petrotos KB (2007) Olive mill wastewater treatment. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 133–157

    Chapter  Google Scholar 

  • Vasapollo G, Longo L, Rescio L et al (2004) Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J Supercrit Fluids 29:87–96

    Article  CAS  Google Scholar 

  • Vázquez L, Torres CF, Fornari T et al (2006) Supercritical fluid extraction of minor lipids from pretreated sunflower oil deodorizer distillates. Eur J Lipid Sci Technol 108:659–665

    Article  CAS  Google Scholar 

  • Vázquez L, Torres CF, Fornari T et al (2007) Recovery of squelene from vegetable oil sources using countercurrent supercritical carbon dioxide extraction. J Supercrit Fluids 40:59–66

    Article  CAS  Google Scholar 

  • Wang CH, Chen CR, Wu JJ et al (2008) Designing supercritical carbon dioxide extraction of rice bran oil that contain oryzanols using response surface methodology. J Sep Sci 31:1399–1407

    Article  CAS  Google Scholar 

  • Wenli Y, Yaping Z, Jingjing C et al (2004) Comparison of two kinds of pumpkin seed oils obtained by supercritical CO2 extraction. Eur J Lipid Sci Technol 106:355–358

    Article  CAS  Google Scholar 

  • Wijngaard H, Hossain MB, Rai DK et al (2012) Techniques to extract bioactive compounds from food products of plant origin. Food Res Int 46:505–513

    Article  CAS  Google Scholar 

  • Yılmaz C, Gökmen V (2013) Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind Crops Prod 49:130–135

    Article  CAS  Google Scholar 

  • Yılmaz EE, Özvural EB, Vural H (2011) Extraction and identification of proantocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J Supercrit Fluids 55:924–928

    Article  CAS  Google Scholar 

  • Yi C, Shi J, Xue SJ et al (2009) Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem 113:1088–1094

    Article  CAS  Google Scholar 

  • Yu L, Haley S, Perret J et al (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50:1619–1624

    Article  CAS  Google Scholar 

  • Zacchi P, Daghero J, Jaeger P et al (2006) Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide. Brazilian J Chem Eng 23:105–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Esra Yener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yener, M.E. (2015). Supercritical Fluid Processing for the Recovery of Bioactive Compounds from Food Industry By-Products. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_9

Download citation

Publish with us

Policies and ethics