Advertisement

Supercritical Fluid Processing for the Recovery of Bioactive Compounds from Food Industry By-Products

  • M. Esra YenerEmail author
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

By-products of food industry, especially wine industry, fruit and vegetable processing industry, oil industry, milling industry, seafood processing industry are rich in bioactive compounds. These compounds are mainly polyunsaturated fatty acids (PUFAs), tocopherols, phytosterols, squalene, carotenoids and polyphenols. Supercritical carbon dioxide (SCCO2) extraction of specialty oils rich in bioactive compounds, fractionation of specialty oils or by-products to enrich the bioactive compounds, supercritical fluid extraction (SFE) of carotenoids and either supercritical (SFE) or subcritical fluid extraction (SCFE), and supercritical antisolvent extraction (SAE) and fractionation (SAF) of polyphenols are discussed.

Keywords

Bioactive PUFA Tocopherol Phytosterol Squalene Carotenoid Polyphenol SCCO2 SFE SCFE SAE SAF 

References

  1. Adil İH, Çetin Hİ, Yener ME et al (2007) Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. J Supercrit Fluids 43:55–63CrossRefGoogle Scholar
  2. Adil İH, Yener ME, Bayındırlı A (2008) Extraction of total phenolics of sour cherry pomace by high pressure solvent and subcritical fluid, and determination of the antioxidant activities of the extracts. Sep Sci Technol 45:1091–1110CrossRefGoogle Scholar
  3. Agostini E, Bertussi RA, Agostini G et al (2012) Supercritical extraction of vinification residues: fatty acids, α-tocopherol, and phenolic compounds in the oil seeds from different varieties of grape. Scientific World J 2012:1–9CrossRefGoogle Scholar
  4. Akgün N (2011) Separation of squelene from olive oil deodorizer distillate using supercritical fluids. Eur J Lipid Sci Technol 113:1558–1565CrossRefGoogle Scholar
  5. Al-Darmaki N, Lu T, Al-Duri B et al (2012) Isothermal and temperature gradient supercritical fluid extraction and fractionation of squelene from palm fatty acid distillate using compressed carbon dioxide. J Supercrit Fluids 61:108–114CrossRefGoogle Scholar
  6. Amiguet VT, Kramp KL, Mao JQ et al (2012) Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chem 130:853–858CrossRefGoogle Scholar
  7. Ashraf-Khorassanı M, Taylor LT (2004) Sequential fractionation of grape seeds into oils, polyphenols and procyanidins via single system employing CO2-based fluids. J Agric Food Chem 52:2440–2444CrossRefGoogle Scholar
  8. Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality and health effects. Eur Food Res Technol 219:561–571CrossRefGoogle Scholar
  9. Berna A, Cháfer A, Montón JB (2001a) High-pressure solubility data of system resveratrol (3) + ethanol (2) + CO2 (1). J Supercrit Fluids 19:133–139CrossRefGoogle Scholar
  10. Berna A, Cháfer A, Montón JB et al (2001b) High-pressure solubility data of system ethanol (1) + catechin (2) + CO2 (3). J Supercrit Fluids 20:157–162CrossRefGoogle Scholar
  11. Bernado-Gil G, Oneto C, Antunes P (2001) Extraction of lipids from cherry seed oil using supercritical carbon dioxide. Eur Food Res Technol 212:170–174CrossRefGoogle Scholar
  12. Bernardo-Gil MG, Cardoso Lopes LM (2004) Supercritical fluid extraction of Cucurbita ficifolia seed oil. Eur Food Res Technol 219:593–597CrossRefGoogle Scholar
  13. Bravi M, Spinoglio F, Vardone N et al (2007) Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2: optimization of extraction conditions. J Food Eng 78:488–493CrossRefGoogle Scholar
  14. Bueno JM, Ramos-Escudero F, Saez-Plaza P et al (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part I. General considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem 55:102–123CrossRefGoogle Scholar
  15. Cao X, Ito Y (2003) Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. J Chromatog A 1021:117–124CrossRefGoogle Scholar
  16. Cardoso de Oliveira R, Rossi RM, Gimenes ML et al (2013) Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by bayesian interference. Grassa Y Aceites 64:400–406CrossRefGoogle Scholar
  17. Cathpole OJ, Grey JB, Mitchell KA et al (2004) Supercritical antisolvent fractionation of propolis tincture. J Supercrit Fluids 29:97–106CrossRefGoogle Scholar
  18. Catchpole OJ, Durling NE, Grey JB et al (2009a) Supercritical antisolvent fractionation of plant extracts. In: Duarte ARC, Duarte CMM (eds) Current trends of supercritical fluid technology in pharmaceutical, nutraceutical and food processing industries. Bentham, Bussum, pp 71–79Google Scholar
  19. Catchpole OJ, Tallon SJ, Eltringham WE et al (2009b) The extraction and fractionation of speciality lipids using near critical fluids. J Supercrit Fluids 47:591–597CrossRefGoogle Scholar
  20. Cháfer A, Berna A, Montón JB et al (2002) High-pressure solubility data of system ethanol (1) + epicatechin (2) + CO2 (3). J Supercrit Fluids 24:103–109CrossRefGoogle Scholar
  21. Cháfer A, Fornari T, Berna A et al (2004) Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modeling. J Supercrit Fluids 32:89–96CrossRefGoogle Scholar
  22. Cháfer A, Pascual-Martí MC, Salvador A et al (2005) Supercritical fluid extraction and HPLC determination of relevant polyphenolic compounds in grape skins. J Sep Sci 28:2050–2056CrossRefGoogle Scholar
  23. Cháfer A, Fornari T, Stateva RP et al (2007) Solubility of the natural antioxidant gallic acid in supercritical CO2 + ethanol as a cosolvent. J Chem Eng Data 52:116–121CrossRefGoogle Scholar
  24. Chandrasekaran M, Shine K (2013) Oil seeds. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 331–376Google Scholar
  25. Chang CJ, Chang YF, Lee HZ et al (2000) Supercritical carbon dioxide extraction of high-value substances from soybean oil deodorizer distillate. Ind Eng Chem Res 39:4521–4525CrossRefGoogle Scholar
  26. Choi ES, Noh MJ, Yoo KP (1998) Solubilities of o-, m- and p-coumeric acid isomers in carbon dioxide at 308.15–323.15 K and 8.5–25 MPa. J Chem Eng Data 43:6–8CrossRefGoogle Scholar
  27. Diaz-Reinoso B, Moure A, Dominguez H et al (2006) Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem 54:2441–2469CrossRefGoogle Scholar
  28. Dunford NT, King JW (2000) Phytosterol enrichment of rice bran oil by a supercritical carbon dioxide fractionation technique. J Food Sci 65:1395–1399CrossRefGoogle Scholar
  29. Dunford NT, Teel JA, King JW (2003) A continuous countercurrent supercritical fluid deacidification process for phtosterol ester fortification in rice bran oil. Food Res Int 36:175–181CrossRefGoogle Scholar
  30. Eisenmenger M, Dunford NT (2008) Bioactive components of commertial and supercritical carbon dioxide processed wheat germ oil. JAOCS 85:55–61Google Scholar
  31. Eisenmenger M, Dunford NT, Eller F et al (2006) Pilot-scale supercritical carbon dioxide extraction and fractionation of wheat germ oil. JAOCS 83:863–868Google Scholar
  32. Eltringham W, Catchpole O (2008) Processing of fish oils by supercritical fluids. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 141–213Google Scholar
  33. Fang T, Goto M, Sasaki M et al (2008) Extraction and purification of natural tocopherols by supercritical CO2. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 103–140Google Scholar
  34. Félix-Valenzuela L, Higuera-Ciapara I, Goycoolea-Valencia F (2001) Supercritical CO2/ethanol extraction of astaxanthin from crab (Callinectes sapidus) shell waste. J Food Process Eng 24:101–112CrossRefGoogle Scholar
  35. Ferdosh S, Sarker MZI, Rahman NNNA et al (2013) Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean J Chem Eng 30:1466–1472CrossRefGoogle Scholar
  36. Ferraro V, Cruz IB, Jorge RF et al (2010) Valorization of natural extracts from marine sources focused on marine by-products: a review. Food Res Int 43:2221–2233CrossRefGoogle Scholar
  37. Fiori L, Salona M, Tosi P et al (2012) Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids. Food Chem 134:1088–1095CrossRefGoogle Scholar
  38. Floris T, Filippino G, Scrugli S et al (2010) Antioxidant compounds recovery from grape residues by supercritical antisolvent assisted process. J Supercrit Fluids 54:165–170CrossRefGoogle Scholar
  39. Fornari T, Torres CF, Señoráns FJ et al (2009) Simulation and optimization of supercritical fluid purification of phtosterol esters. AIChE J 55:1023–1029CrossRefGoogle Scholar
  40. Ge Y, Ni Y, Yan H et al (2002a) Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J Food Sci 67:239–243CrossRefGoogle Scholar
  41. Ge Y, Yan H, Hui B et al (2002b) Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J Agric Food Chem 50:685–689CrossRefGoogle Scholar
  42. Gelmez N, Kıncal NS, Yener ME (2009) Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents and antioxidant activities of the extracts. J Supercrit Fluids 48:217–224CrossRefGoogle Scholar
  43. Gómez AM, de la Ossa EM (2000) Quality of wheat germ oil extracted by liquid and supercritical carbon dioxide. JAOCS 77:969–974Google Scholar
  44. Gómez AM, López CP, de la Ossa EM (1996) Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: a comparison with conventional solvent extraction. Chem Eng J 61:227–231Google Scholar
  45. Gracia I, Rodríguez JF, de Lucas A et al (2011) Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk. J Supercrit Fluids 59:72–77CrossRefGoogle Scholar
  46. Gurdial GS, Foster NR, Jimmy Yun SL et al (1993) Phase behaviour of supercritical fluid-entrainer systems. In: Kiran E, Brennecke JF (eds) Supercritical fluid engineering science: fundamentals and applications, ACS Symposium Series. ACS, Washington, pp 34–39Google Scholar
  47. Guyot S, Marnet N, Laraba D et al (1998) Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a french cider apple variety (Malus domestica Var. Kermerrien). J Agric Food Chem 46:1698–1705CrossRefGoogle Scholar
  48. Güçlü-Üstündağ Ö, Temelli F (2000) Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides and fatty acid esters in supercritical carbon dioxide. Ind Eng Chem Res 39:4756–4766CrossRefGoogle Scholar
  49. Güçlü-Üstündağ Ö, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31:235–253CrossRefGoogle Scholar
  50. Halvorsen BL, Holte K, Myhrstad MCW et al (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471Google Scholar
  51. Herrero M, Cifuentes A, Ibáñez E (2006) Sub- and supercritical extraction of functional ingredients from natural sources: plants, food-by-products, algea and microalgae: a review. Food Chem 98:136–148CrossRefGoogle Scholar
  52. Herrero M, Mendiola JA, Cifuentes A et al (2010) Supercritical fluid extraction: recent advances and applications. J Chromatog A 1217:2495–2511CrossRefGoogle Scholar
  53. Herrero M, Castro-Puayana M, Mendiola JA et al (2013) Compressed fluids for the extraction of bioactive compounds. Trends Anal Chem 43:67–83CrossRefGoogle Scholar
  54. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nut 46:185–196CrossRefGoogle Scholar
  55. Hrabovski N, Sinadinović-Fiser S, Nikolovski B et al (2012) Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur J Lipid Sci Technol 114:1204–1211CrossRefGoogle Scholar
  56. Huang W, Li Z, Niu H et al (2008) Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J Food Eng 89:298–302CrossRefGoogle Scholar
  57. Ibáñez E, Palacios J, Señorans FJ et al (2000) Isolation and separation of tocopherols from olive by-products with supercritical fluids. JAOCS 77:187–190Google Scholar
  58. Junior MRM, Leite AV, Dragano NRV (2010) Supercritical fluid extraction and stabilization of phenolic compounds from natural sources-Review (Supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J 4:51–60CrossRefGoogle Scholar
  59. Kao TH, Chen BH (2013) Fruits and vegatables. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 517–557Google Scholar
  60. Kassama LS, Shi J, Mittal GS et al (2008) Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Sep Pur Tech 60:278–284CrossRefGoogle Scholar
  61. Kim HJ, Lee SB, Park KA et al (1999) Characterization of extraction and separation of rice bran oil rich in EFA using SFE process. Sep Pur Technol 15:1–8CrossRefGoogle Scholar
  62. King JW, Dunford NT (2002) Phetosterol-enriched triglyceride fractions from vegetable oil deodorizer distillates utilizing supercritical fluid fractionation technology. Sep Sci Technol 37:451–462CrossRefGoogle Scholar
  63. Ko SN, Ha TY, Hong SI et al (2012) Enrichment of tocols from rice germ oil using supercritical carbon dioxide. Int J Food Sci Technol 47:761–767CrossRefGoogle Scholar
  64. Krings U, Berger RG (2001) Antioxidant activity of some roasted foods. Food Chem 72:223–229CrossRefGoogle Scholar
  65. Krings U, El-Saharty YS, El-Zeany BA et al (2000) Antioxidant activity of extracts from roasted wheat germ. Food Chem 71:91–95CrossRefGoogle Scholar
  66. Krings U, Johansson L, Zorn H et al (2006) In vitro DNA-protective activity of roasted wheat germ and fractions thereof. Food Chem 97:712–718CrossRefGoogle Scholar
  67. Krishna JG, Chandrasekaran M (2013) Biochemical and nutritional aspects of food processing by-products. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 167–185Google Scholar
  68. Kuk MS, Down MK (1998) Supercritical CO2 extraction of rice bran. JAOCS 75:623–628Google Scholar
  69. Kumar RS, Chandrasekaran M (2013) Beverages. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 589–614Google Scholar
  70. Leantowicz H, Gorinstein S, Lojek A et al (2002) Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. J Nutr Biochem 13:603–610CrossRefGoogle Scholar
  71. Létisse M, Comeau L (2008) Enrichment of eicosapentaenoic and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. J Sep Sci 31:1374–1380CrossRefGoogle Scholar
  72. Liu G, Xu X, Hao Q et al (2009) Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT-Food Sci Technol 42:1491–1495CrossRefGoogle Scholar
  73. Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants form wine industry by-products. Biores Technol 92:201–208CrossRefGoogle Scholar
  74. Machado BAS, Preira CG, Nunes SB et al (2013) Supercritical fluid extraction using CO2: main applications and future perspectives. Sep Sci Technol 48:2741–2760CrossRefGoogle Scholar
  75. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747Google Scholar
  76. Mitra P, Ramaswamy HS, Chang KS (2009) Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. J Food Eng 95:208–213CrossRefGoogle Scholar
  77. Moure A, Cruz JM, Franco D et al (2001) Natural antioxidants from residual sources. Food Chem 72:145–171CrossRefGoogle Scholar
  78. Muragan K, Chandrasekaran VS, Karthikeyan P et al (2013) Current state-of-the-art of food processing by-products. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 35–61Google Scholar
  79. Murga R, Ruiz R, Beltrán S et al (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48:3408–3412CrossRefGoogle Scholar
  80. Murga R, Sanz MT, Beltrán S et al (2002) Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide. J Supercrit Fluids 23:113–121CrossRefGoogle Scholar
  81. Murga R, Sanz MT, Beltrán S et al (2003) Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. J Supercrit Fluids 27:239–245CrossRefGoogle Scholar
  82. Murga R, Sanz MT, Beltrán S et al (2004) Solubility of syringic and vanillic acids in supercritical carbon dioxide. J Chem Eng Data 49:779–782CrossRefGoogle Scholar
  83. Nobre BP, Palavra AF, Pessao LP et al (2009) Supercritical CO2 extraction of trans-lycopene from Portugese tomato industrial waste. Food Chem 116:680–685CrossRefGoogle Scholar
  84. Ollanketo M, Hartonen K, Riekkola ML et al (2001) Supercritical carbon dioxide extraction of lycopene in tomato skins. Eur Food Res Technol 21:561–565CrossRefGoogle Scholar
  85. Oreopoulou V, Tzia C (2007) Utilization of plant by-products for the recovery of proteins, dietary fiber, antioxidants and colorants. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 209–232CrossRefGoogle Scholar
  86. Özkal SG, Yener ME, Bayındırlı L (2005a) Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. J Supercrit Fluids 35:119–127CrossRefGoogle Scholar
  87. Özkal SG, Yener ME, Bayındırlı L (2005b) Response surfaces of apricot kernel oil yield in supercritical carbon dioxide. Food Sci Technol 38:611–616Google Scholar
  88. Özkal SG, Yener ME, Bayındırlı L (2006) The solubility of apricot kernel oil in supercritical carbon dioxide. Int J Food Sci Technol 41:399–404CrossRefGoogle Scholar
  89. Palma M, Taylor LT (1999a) Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. J Chromotogr A 849:117–124CrossRefGoogle Scholar
  90. Palma M, Taylor LT (1999b) Fractional extraction of compounds from grape seeds by supercritical fluid extraction and analysis for antimicrobial and agrochemical activities. J Agric Food Chem 47:5044–5048CrossRefGoogle Scholar
  91. Panfili G, Cinquanta L, Fratianni A et al (2003) Extraction of wheat germ oil by supercritical CO2: oil and defatted cake characterization. JAOCS 80:157–161Google Scholar
  92. Pascual-Martí MC, Salvador A, Cháfer A et al (2001) Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta 54:735–740CrossRefGoogle Scholar
  93. Passos CP, Silva RM, Da Silva FA et al (2009) Enhancement of the supercritical fluid extraction of grape seed oil by using enzymatically pre-treated seed. J Supercrit Fluids 48:225–229CrossRefGoogle Scholar
  94. Passos CP, Silva RM, Da Silva FA et al (2010) Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil. Effect of operating conditions upon oil composition and antioxidant capacity. Chem Eng J 160:634–640CrossRefGoogle Scholar
  95. Pereira CG, Angela M, Meireles A (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 2:340–372CrossRefGoogle Scholar
  96. Perretti G, Miniati E, Montanari L et al (2003) Improving the value of rice by-products. J Supercrit Fluids 26:63–71CrossRefGoogle Scholar
  97. Pinelo A, Ruiz-Rodríguez A, Sineiro J et al (2007) Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. European Food Res Technol 22:199–205CrossRefGoogle Scholar
  98. Prado JM, Dalmolin I, Carareto NDD et al (2012) Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. J Food Eng 109:249–257CrossRefGoogle Scholar
  99. Reverchon E, de Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166CrossRefGoogle Scholar
  100. Rozzi NL, Singh RK, Vierling RA et al (2002) Supercritical fluid extraction of lycopene from tomato processing by-products. J Agric Food Chem 50:2638–2643CrossRefGoogle Scholar
  101. Rubio-Rodríguez N, de Diego S, Beltrán S et al (2008) Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. J Supercrit Fluids 47:215–226CrossRefGoogle Scholar
  102. Rubio-Rodríguez N, Beltrán S, Jaime I et al (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovative Food Sci Eng Tech 11:1–12CrossRefGoogle Scholar
  103. Rubio-Rodríguez N, de Diego S, Beltrán S et al (2012) Supercritical fluid extraction of fish oil from fish by-products: a comparison with other extraction methods. J Food Eng 109:238–248CrossRefGoogle Scholar
  104. Russ W, Schnappinger M (2007) Waste related to the food industry. A challenge in material loops. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 209–232Google Scholar
  105. Sabio E, Lazano M, Montero de Espinosa V et al (2003) Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res 42:6641–6646CrossRefGoogle Scholar
  106. Salgın U, Korkmaz H (2011) A green separation process for recovery of healthy oil from pumpkin seed. J Supercrit Fluids 58:239–248CrossRefGoogle Scholar
  107. Sánchez-Camargo AP, Martinez-Correa HA, Paviani LC et al (2011a) Supercritical CO2 extraction of lipids and astaxathin from redspotted shrimp waste (Farfantepenaeus paulensis). J Supercrit Fluids 56:164–173CrossRefGoogle Scholar
  108. Sánchez-Camargo AP, Meireles MAA, Lopes BLF et al (2011b) Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J Food Eng 102:87–93CrossRefGoogle Scholar
  109. Sánchez-Camargo AP, Meireles MAA, Freira ALK et al (2012) Extraction of ω-3 fatty acids and astaxantin from Brazilian redspotted shrimp waste using supercritical CO2 + ethanol mixtures. J Supercrit Fluids 61:71–77CrossRefGoogle Scholar
  110. Sánchez-Vicente Y, Cabañaz A, Renuncio JAR et al (2009) Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. J Supercrit Fluids 49:167–173CrossRefGoogle Scholar
  111. Sarmento CMP, Ferreira SRS, Hense H (2006) Supercritical fluid extraction (SFE) of rice bran oil to obtain fractions enriched with tocopherols and tocotrienols. Brazilian J Chem Eng 23:243–249CrossRefGoogle Scholar
  112. Schieber A, Stintzing FC, Carle R (2001) By-products of plant processing as a source of functional compounds-recent developments. Trends Food Sci Technol 12:401–413CrossRefGoogle Scholar
  113. Schwartz H, Ollilainen V, Piironen V et al (2008) Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J Food Comp Anal 21:152–161CrossRefGoogle Scholar
  114. Serra AT, Seabra IJ, Braga MEM et al (2010) Processing cherries (Prumus avium) using supercritical fluid technology. Part 1: recovery of extracts fractions rich in bioactive compounds. J Supercrit Fluids 55:185–191Google Scholar
  115. Shen Z, Palmer MV, Ting SST et al (1996) Pilot scale extraction of rice bran oil with dense carbon dioxide. J Agric Food Chem 44:3033–3039CrossRefGoogle Scholar
  116. Shi J, Nawaz H, Pohorly J et al (2005) Extraction of polyphenolics from plant materials for functional foods-engineering and technology. Food Reviews Int 21:139–166CrossRefGoogle Scholar
  117. Shi J, Mittal G, Kim E et al (2007) Solubility of carotenoids in supercritical CO2. Food Reviews Int 23:341–371CrossRefGoogle Scholar
  118. Shi C, Chun Y, Xue SJ et al (2009) Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J Food Eng 93:431–436CrossRefGoogle Scholar
  119. Snyder JM, King JW, Taylor SL et al (1999) Concentration of phytosterols for analysis by supercritical fluid extraction. JAOCS 76:717–721Google Scholar
  120. Sovová H, Stateva RP, Galushko AA (2001) Solubility of β-carotene in supercritical CO2 and effect of entrainers. J Supercrit Fluids 21:195–203CrossRefGoogle Scholar
  121. Sparks D, Hernandez R, Zappi M et al (2006) Extraction of rice bran oil using supercritical carbon dioxide and propane. JAOCS 83:885–891Google Scholar
  122. Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrots using canola oil as a continuous co-solvent. J Supercrit Fluids 37:397–408CrossRefGoogle Scholar
  123. Suresh PV, Prabhu GN (2013) Seafood. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC, Boca Raton, pp 685–736Google Scholar
  124. Şanal İS, Güvenç A, Salgın U et al (2004) Recycling of apricot pomace by supercritical CO2 extraction. J Supercrit Fluids 32:221–230CrossRefGoogle Scholar
  125. Şanal İS, Bayraktar E, Mehmetoğlu Ü et al (2005) Determination of optimum conditions for SC-(CO2 + ethanol) extraction of β-carotene from apricot pomace using response surface methodology. J Supercrit Fluids 34:331–338CrossRefGoogle Scholar
  126. Temelli F (2009) Perspectives on supercritical fluid processing of fats and oils. J Supercrit Fluids 47:583–590CrossRefGoogle Scholar
  127. Temelli F, Saldana MDA, Moquin PHL et al (2008) Supercritical fluid extraction of specialty oils. In: Martínez JL (ed) Supercritical fluid extraction of neutraceuticals and bioactive compounds. CRC, Boca Raton, pp 51–101Google Scholar
  128. Tomás-Barberán FA, Gil MI, Cremin P et al (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760CrossRefGoogle Scholar
  129. Topal U, Sasaki M, Goto M et al (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610CrossRefGoogle Scholar
  130. Torres CF, Fornari T, Torrelo G et al (2009) Production of pytosterol esters from soybean oil deodorizer distillates. Eur J Lipid Sci Technol 111:459–463CrossRefGoogle Scholar
  131. Tsagaraki E, Lazarides HN, Petrotos KB (2007) Olive mill wastewater treatment. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 133–157CrossRefGoogle Scholar
  132. Vasapollo G, Longo L, Rescio L et al (2004) Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J Supercrit Fluids 29:87–96CrossRefGoogle Scholar
  133. Vázquez L, Torres CF, Fornari T et al (2006) Supercritical fluid extraction of minor lipids from pretreated sunflower oil deodorizer distillates. Eur J Lipid Sci Technol 108:659–665CrossRefGoogle Scholar
  134. Vázquez L, Torres CF, Fornari T et al (2007) Recovery of squelene from vegetable oil sources using countercurrent supercritical carbon dioxide extraction. J Supercrit Fluids 40:59–66CrossRefGoogle Scholar
  135. Wang CH, Chen CR, Wu JJ et al (2008) Designing supercritical carbon dioxide extraction of rice bran oil that contain oryzanols using response surface methodology. J Sep Sci 31:1399–1407CrossRefGoogle Scholar
  136. Wenli Y, Yaping Z, Jingjing C et al (2004) Comparison of two kinds of pumpkin seed oils obtained by supercritical CO2 extraction. Eur J Lipid Sci Technol 106:355–358CrossRefGoogle Scholar
  137. Wijngaard H, Hossain MB, Rai DK et al (2012) Techniques to extract bioactive compounds from food products of plant origin. Food Res Int 46:505–513CrossRefGoogle Scholar
  138. Yılmaz C, Gökmen V (2013) Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind Crops Prod 49:130–135CrossRefGoogle Scholar
  139. Yılmaz EE, Özvural EB, Vural H (2011) Extraction and identification of proantocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J Supercrit Fluids 55:924–928CrossRefGoogle Scholar
  140. Yi C, Shi J, Xue SJ et al (2009) Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem 113:1088–1094CrossRefGoogle Scholar
  141. Yu L, Haley S, Perret J et al (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50:1619–1624CrossRefGoogle Scholar
  142. Zacchi P, Daghero J, Jaeger P et al (2006) Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide. Brazilian J Chem Eng 23:105–110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Food EngineeringMiddle East Technical UniversityÇankayaTurkey

Personalised recommendations