Direct and Indirect Applications of Sub- and Supercritical Water in Food-Related Analysis

Part of the Food Engineering Series book series (FSES)


In this chapter, a brief survey is presented of applications of subcritical and supercritical water in food-related analytical separations. As illustrated by numerous reports in the literature, direct applications of high-temperature water as an extraction agent or a chromatographic mobile phase are limited by the chemical stability of the particular target substances (analytes) in the high-temperature aqueous systems. With sensitive and easy-to-hydrolyze substances encountered in food-related analyses, the direct applications of water in the above roles are mostly limited to temperatures far below the critical temperature of water. In turn, promising indirect applications of sub- and/or supercritical water in analytical separations capitalize on the ability of high-temperature water to dissolve fused silica. Therefore, supercritical water can be used as a green agent to alter the internal diameter of fused-silica capillaries (e.g., to create an inlet taper) or to manipulate the roughness of their inner surfaces. The tapered capillaries have been shown to provide enhanced separation efficiency of capillary isoelectric focusing of amphoteric analytes (e.g., peptides and proteins) and microorganisms. The constant-diameter capillaries with roughened inner surfaces are expected to be useful in the preparation of monolithic silica-based capillary chromatographic columns.


Supercritical water Fused silica capillaries Pressurized hot water extraction Isoelectric focusing in tapered capillaries Separation of microorganisms Capillary liquid chromatography Monolithic silica column Food analysis and safety 



Financial support of the Czech Science Foundation (Projects P206/11/0138, P503/11/P523 and P106/12/0522), of the Ministry of Interior of the Czech Republic (Projects VG20102015023 and VG20112015021), and of the Academy of Sciences of the Czech Republic (Institutional Support RVO:68081715) is gratefully acknowledged.


  1. Adschiri T, Lee Y-W, Goto M et al (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390CrossRefGoogle Scholar
  2. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196CrossRefGoogle Scholar
  3. Alvarez VH, Saldaña MDA (2011) Modeling solubility of polycyclic aromatic compounds in subcritical water. Ind Eng Chem Res 50:11396–11405CrossRefGoogle Scholar
  4. Anderson GM, Burnham CW (1965) The solubility of quartz in supercritical water. Am J Sci 263:494–511CrossRefGoogle Scholar
  5. Andersson T, Hartonen K, Hyötyläinen T et al (2003) Stability of polycyclic aromatic hydrocarbons in pressurised hot water. Analyst 128:150–155CrossRefGoogle Scholar
  6. Andersson TA, Hartonen KM, Riekkola M-L (2005) Solubility of acenaphthene, anthracene, and pyrene in water at 50 °C to 300 °C. J Chem Eng Data 50:1177–1183CrossRefGoogle Scholar
  7. Armstrong DW, Schulte G, Schneiderheinze JM et al (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71:5465–5469CrossRefGoogle Scholar
  8. Arrua RD, Talebi M, Causon TJ et al (2012) Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 738:1–12CrossRefGoogle Scholar
  9. Bandura AV, Lvov SN (2006) The ionization constant of water over wide ranges of temperature and density. J Phys Chem Ref Data 35:15–30CrossRefGoogle Scholar
  10. Basile A, Jiménez-Carmona MM, Clifford AA (1998) Extraction of rosemary by superheated water. J Agric Food Chem 46:5205–5209CrossRefGoogle Scholar
  11. Bermejo MD, Cocero MJ (2006) Supercritical water oxidation: a technical review. AIChE J 52:3933–3951CrossRefGoogle Scholar
  12. Brunner G (2001) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342CrossRefGoogle Scholar
  13. Brunner G (2009a) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47:373–381CrossRefGoogle Scholar
  14. Brunner G (2009b) Near critical and supercritical water. Part II. Oxidative processes. J Supercrit Fluids 47:382–390CrossRefGoogle Scholar
  15. Bucar F, Wube A, Schmid M (2013) Natural product isolation—how to get from biological material to pure compounds. Nat Prod Rep 30:525–545CrossRefGoogle Scholar
  16. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247CrossRefGoogle Scholar
  17. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P et al (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17CrossRefGoogle Scholar
  18. Carbonnelle E, Mesquita C, Bille E et al (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109CrossRefGoogle Scholar
  19. Carr AG, Mammucari R, Foster NR (2010a) Solubility and micronization of griseofulvin in subcritical water. Ind Eng Chem Res 49:3403–3410CrossRefGoogle Scholar
  20. Carr AG, Mammucari R, Foster NR (2010b) Solubility, solubility modeling, and precipitation of naproxen from subcritical water solutions. Ind Eng Chem Res 49:9385–9393CrossRefGoogle Scholar
  21. Carr AG, Branch A, Mammucari R et al (2010c) The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J Supercrit Fluids 55:37–42CrossRefGoogle Scholar
  22. Carr AG, Mammucari R, Foster NR (2011) A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172:1–17CrossRefGoogle Scholar
  23. Chandler K, Eason B, Liotta CL et al (1998) Phase equilibria for binary aqueous systems from a near-critical water reaction apparatus. Ind Eng Chem Res 37:3515–3518CrossRefGoogle Scholar
  24. Chen C-TA, Marshall WL (1982) Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C. Geochim Cosmochim Acta 46:279–287CrossRefGoogle Scholar
  25. Co M, Koskela P, Eklund-Åkergren P et al (2009) Pressurized liquid extraction of betulin and antioxidants from birch bark. Green Chem 11:668–674CrossRefGoogle Scholar
  26. Dack MRJ (1975) Solvent structure. The use of internal pressure and cohesive energy density to examine contributions to solvent-solvent interactions. Aust J Chem 28:1643–1648CrossRefGoogle Scholar
  27. del Valle JM, de la Fuente JC, Srinivas K et al (2011) Correlation for the variations with temperature of solute solubilities in high temperature water. Fluid Phase Equilib 301:206–216CrossRefGoogle Scholar
  28. Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93CrossRefGoogle Scholar
  29. Dohrn R, Peper S, Fonseca JMS (2010) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000–2004). Fluid Phase Equilib 288:1–54CrossRefGoogle Scholar
  30. Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40Google Scholar
  31. Dolník V, Deml M, Boček P (1985) Large sample volume preseparation for trace analysis in isotachophoresis. J Chromatogr 320:89–97CrossRefGoogle Scholar
  32. Escandell J, Raspo I, Neau E (2014) Prediction of solid polycyclic aromatic hydrocarbons solubility in water, with the NRTL–PR model. Fluid Phase Equilib 362:87–95CrossRefGoogle Scholar
  33. Everaerts FM, Verheggen TPEM, Mikkers FEP (1979) Determination of substances at low concentrations in complex mixtures by isotachophoresis with column coupling. J Chromatogr 169:21–38CrossRefGoogle Scholar
  34. Fernández DP, Goodwin ARH, Lemmon EW et al (1997) A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J Phys Chem Ref Data 26:1125–1166CrossRefGoogle Scholar
  35. Fonseca JMS, Dohrn R, Peper S (2011) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Phase Equilib 300:1–69CrossRefGoogle Scholar
  36. Foret F, Šustáček V, Boček P (1990) On-line isotachophoretic sample preconcentration for enhancement of zone detectability in capillary zone electrophoresis. J Microcol Sep 2:229–233CrossRefGoogle Scholar
  37. Fornari T, Stateva RP, Señorans FJ et al (2008) Applying UNIFAC-based models to predict the solubility of solids in subcritical water. J Supercrit Fluids 46:245–251CrossRefGoogle Scholar
  38. Fornari T, Ibañez E, Reglero G et al (2011) Analysis of predictive thermodynamic models for estimation of polycyclic aromatic solid solubility in hot pressurized water. Open Thermodyn J 5(Suppl 1-M4):40–47CrossRefGoogle Scholar
  39. Fournier RO, Marshall WL (1983) Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water. Geochim Cosmochim Acta 47:587–596CrossRefGoogle Scholar
  40. Fournier RO, Rowe JJ (1977) The solubility of amorphous silica in water at high temperatures and high pressures. Am Mineral 62:1052–1056Google Scholar
  41. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–1099CrossRefGoogle Scholar
  42. Fredenslund A, Gmehling J, Rasmussen P (1977) Vapor–liquid equilibria using UNIFAC. Elsevier, AmsterdamGoogle Scholar
  43. Gama MR, da Costa Silva RG, Collins CH et al (2012) Hydrophilic interaction chromatography. TrAC—Trends Analyt Chem 37:48–60CrossRefGoogle Scholar
  44. Gil-Chávez GJ, Villa JA, Ayala-Zavala JF et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23CrossRefGoogle Scholar
  45. Gil-Ramírez A, Mendiola JA, Arranz E et al (2012) Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innov Food Sci Emerg 16:54–60CrossRefGoogle Scholar
  46. Gmehling J (2009) Present status and potential of group contribution methods for process development. J Chem Thermodyn 41:731–747CrossRefGoogle Scholar
  47. Gmehling J, Li JD, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res 32:178–193CrossRefGoogle Scholar
  48. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168CrossRefGoogle Scholar
  49. Hara T, Kobayashi H, Ikegami T et al (2006) Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal Chem 78:7632–7642CrossRefGoogle Scholar
  50. Hartonen K, Parshintsev J, Sandberg K et al (2007) Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta 74:32–38CrossRefGoogle Scholar
  51. Hawthorne SB, Yang Y, Miller DJ (1994) Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal Chem 66:2912–2920CrossRefGoogle Scholar
  52. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817CrossRefGoogle Scholar
  53. Hemley JJ, Montoya JW, Marinenko JW et al (1980) Equilibria in the system Al2O3—SiO2–H2O and some general implications for alteration/mineralization processes. Econ Geol 75:210–228CrossRefGoogle Scholar
  54. Herrero M, Castro-Puyana M, Rocamora-Reverte L et al (2012) Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Res Int 47:31–37CrossRefGoogle Scholar
  55. Horie K, Ikegami T, Hosoya K et al (2007) Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J Chromatogr A 1164:198–205CrossRefGoogle Scholar
  56. Horká M, Willimann T, Blum M et al (2001) Capillary isoelectric focusing with UV-induced fluorescence detection. J Chromatogr A 916:65–71CrossRefGoogle Scholar
  57. Horká M, Planeta J, Růžička F et al (2003) Sol-gel column technology for capillary isoelectric focusing of microorganisms and biopolymers with UV or fluorometric detection. Electrophoresis 24:1383–1390CrossRefGoogle Scholar
  58. Horká M, Růžička F, Horký J et al (2006a) Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. J Chromatogr B 841:152–159CrossRefGoogle Scholar
  59. Horká M, Růžička F, Holá V et al (2006b) Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem 385:840–846CrossRefGoogle Scholar
  60. Horká M, Růžička F, Horký J et al (2006c) Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate. Anal Chem 78:8438–8444CrossRefGoogle Scholar
  61. Horká M, Horký J, Matoušková H et al (2009a) Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues. J Chromatogr A 1216:1019–1024CrossRefGoogle Scholar
  62. Horká M, Růžička F, Holá V et al (2009b) Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant. Anal Chem 81:6897–6904CrossRefGoogle Scholar
  63. Horká M, Horký J, Kubesová A et al (2010) Electromigration techniques—a fast and economical tool for differentiation of similar strains of microorganisms. Analyst 135:1636–1644CrossRefGoogle Scholar
  64. Horká M, Růžička F, Kubesová A et al (2011) Separation of phenotypically indistinguishable Candida species, C. orthopsilosis, C. metapsilosis and C. parapsilosis, by capillary electromigration techniques. J Chromatogr A 1218:3900–3907CrossRefGoogle Scholar
  65. Horká M, Karásek P, Šalplachta J et al (2013a) CIEF separation of probiotic bacteria from cow’s milk in tapered fused silica capillary with off-line MALDI-TOF MS identification. Anal Chim Acta 788:193–199CrossRefGoogle Scholar
  66. Horká M, Šalplachta J, Karásek P et al (2013b) Combination of capillary isoelectric focusing in tapered capillary with MALDI-TOF MS for rapid and reliable identification of Dickeya species from plant samples. Anal Chem 85:6806–6812CrossRefGoogle Scholar
  67. Ibañez E, Kubátová A, Señoráns FJ et al (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51:375–382CrossRefGoogle Scholar
  68. Ikegami T, Fujita H, Horie K et al (2006) HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide. Anal Bioanal Chem 386:578–585CrossRefGoogle Scholar
  69. Ikegami T, Horie K, Saad N et al (2008) Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 391:2533–2542CrossRefGoogle Scholar
  70. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25CrossRefGoogle Scholar
  71. Karásek P, Planeta J, Roth M (2006a) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water at temperatures from 313 K to the melting point. J Chem Eng Data 51:616–622CrossRefGoogle Scholar
  72. Karásek P, Planeta J, Roth M (2006b) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water: Correlation with pure component properties. Ind Eng Chem Res 45:4454–4460CrossRefGoogle Scholar
  73. Karásek P, Planeta J, Roth M (2007) Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene. J Chromatogr A 1140:195–204CrossRefGoogle Scholar
  74. Karásek P, Planeta J, Roth M (2008a) Solubilities of triptycene, 9-phenylanthracene, 9,10-dimethylanthracene, and 2-methylanthracene in pressurized hot water at temperatures from 313 K to the melting point. J Chem Eng Data 53:160–164CrossRefGoogle Scholar
  75. Karásek P, Planeta J, Roth M (2008b) Solubilities of adamantane and diamantane in pressurized hot water. J Chem Eng Data 53:816–819CrossRefGoogle Scholar
  76. Karásek P, Planeta J, Roth M (2008c) Simple first-order group contribution scheme for solubilities of solid polycyclic aromatic hydrocarbons and solid polycyclic aromatic heterocycles in pressurized hot water. Ind Eng Chem Res 47:620–626CrossRefGoogle Scholar
  77. Karásek P, Planeta J, Roth M (2009) Solubilities of oxygenated aromatic solids in pressurized hot water. J Chem Eng Data 54:1457–1461CrossRefGoogle Scholar
  78. Karásek P, Hohnová B, Planeta J et al (2010a) Solubility of solid ferrocene in pressurized hot water. J Chem Eng Data 55:2866–2869CrossRefGoogle Scholar
  79. Karásek P, Planeta J, Roth M (2010b) Group contribution correlation for aqueous solubilities of solid aromatics, heterocycles, and diamondoids over a 200 K temperature interval. Ind Eng Chem Res 49:3485–3491CrossRefGoogle Scholar
  80. Karásek P, Hohnová B, Planeta J et al (2013a) Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K. Chemosphere 90:2035–2040CrossRefGoogle Scholar
  81. Karásek P, Št’avíková L, Planeta J et al (2013b) Solubility of fused silica in sub- and supercritical water: estimation from a thermodynamic model. J Supercrit Fluids 83:72–77CrossRefGoogle Scholar
  82. Karásek P, Planeta J, Roth M (2013c) Near- and supercritical water as a diameter manipulation and surface roughening agent in fused silica capillaries. Anal Chem 85:327–333CrossRefGoogle Scholar
  83. Kayan B, Yang Y, Lindquist EJ et al (2010) Solubility of benzoic and salicylic acids in subcritical water at temperatures ranging from (298 to 473) K. J Chem Eng Data 55:2229–2232CrossRefGoogle Scholar
  84. Kennedy GC (1950) A portion of the system silica–water. Econ Geol 45:629–653CrossRefGoogle Scholar
  85. Ko M-J, Cheigh C-I, Chung M-S (2014) Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem 143:147–155CrossRefGoogle Scholar
  86. Koshel BM, Wirth MJ (2012) Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics 12:2918–2926CrossRefGoogle Scholar
  87. Kostal V, Arriaga EA (2008) Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis 29:2578–2586CrossRefGoogle Scholar
  88. Kremser L, Bilek G, Blaas D et al (2007) Capillary electrophoresis of viruses, subviral particles and virus complexes. J Separ Sci 30:1704–1713CrossRefGoogle Scholar
  89. Kronholm J, Hartonen K, Riekkola M-L (2007) Analytical extractions with water at elevated temperatures and pressures. TrAC—Trends Analyt Chem 26:396–412CrossRefGoogle Scholar
  90. Kruse A (2008) Supercritical water gasification. Biofuels, Bioprod Bioref 2:415–437CrossRefGoogle Scholar
  91. Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. J Supercrit Fluids 39:362–380CrossRefGoogle Scholar
  92. Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521CrossRefGoogle Scholar
  93. Kubátová A, Lagadec AJM, Miller DJ et al (2001) Selective extraction of oxygenates from savory and peppermint using subcritical water. Flavour Fragrance J 16:64–73CrossRefGoogle Scholar
  94. Lide DR (ed) (2004) Handbook of chemistry and physics on CD-ROM. Version 2004. CRC, Boca RatonGoogle Scholar
  95. Liebscher A (2010) Aqueous fluids at elevated pressure and temperature. Geofluids 10:3–19Google Scholar
  96. Lindahl S, Liu JY, Khan S et al (2013) An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glycosides from onions. Anal Chim Acta 785:50–59CrossRefGoogle Scholar
  97. Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85:583–589CrossRefGoogle Scholar
  98. Luque-Rodríguez JM, Luque de Castro MD, Pérez-Juan P (2007) Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresource Technol 98:2705–2713CrossRefGoogle Scholar
  99. Machida H, Takesue M, Smith RL (2011) Green chemical processes with supercritical fluids: properties, materials, separations and energy. J Supercrit Fluids 60:2–15CrossRefGoogle Scholar
  100. Malerod H, Rogeberg M, Tanaka N et al (2013) Large volume injection of aqueous peptide samples on a monolithic silica based zwitterionic-hydrophilic interaction liquid chromatography system for characterization of posttranslational modifications. J Chromatogr A 1317:129–137CrossRefGoogle Scholar
  101. Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839CrossRefGoogle Scholar
  102. Marrone PA (2013) Supercritical water oxidation—current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288CrossRefGoogle Scholar
  103. Marshall WL, Franck EU (1981) Ion product of water substance, 0–1000 °C, 1–10,000 bars. New international formulation and its background. J Phys Chem Ref Data 10:295–304CrossRefGoogle Scholar
  104. Mathis J, Gizir AM, Yang Y (2004) Solubility of alkylbenzenes and a model for predicting the solubility of liquid organics in high-temperature water. J Chem Eng Data 49:1269–1272CrossRefGoogle Scholar
  105. Mendiola JA, Herrero M, Cifuentes A et al (2007) Use of compressed fluids for sample preparation: food applications. J Chromatogr A 1152:234–246CrossRefGoogle Scholar
  106. Miller DJ, Hawthorne SB (1998) Method for determining the solubilities of hydrophobic organics in subcritical water. Anal Chem 70:1618–1621CrossRefGoogle Scholar
  107. Miller DJ, Hawthorne SB (2000a) Solubility of liquid organics of environmental interest in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:78–81CrossRefGoogle Scholar
  108. Miller DJ, Hawthorne SB (2000b) Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:315–318CrossRefGoogle Scholar
  109. Miller DJ, Hawthorne SB, Gizir AM et al (1998) Solubility of polycyclic aromatic hydrocarbons in subcritical water from 298 K to 498 K. J Chem Eng Data 43:1043–1047CrossRefGoogle Scholar
  110. Minakuchi H, Nakanishi K, Soga N et al (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498–3501CrossRefGoogle Scholar
  111. Möller M, Nilges P, Harnisch F et al (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4:566–579CrossRefGoogle Scholar
  112. Morales FJ, Babbel M-B (2002) Antiradical efficiency of Maillard reaction mixtures in a hydrophilic media. J Agric Food Chem 50:2788–2792CrossRefGoogle Scholar
  113. Moravcová D, Planeta J, Kahle V et al (2012) Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J Chromatogr A 1270:178–185CrossRefGoogle Scholar
  114. Motokawa M, Kobayashi H, Ishizuka N et al (2002) Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J Chromatogr A 961:53–63CrossRefGoogle Scholar
  115. Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18CrossRefGoogle Scholar
  116. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid I. Gel formation behavior and effect of solvent composition. J Non-Cryst Solids 139:1–13CrossRefGoogle Scholar
  117. Nerín C, Salafranca J, Aznar M et al (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393:809–833CrossRefGoogle Scholar
  118. Newton RC, Manning CE (2009) Hydration state and activity of aqueous silica in H2O-CO2 fluids at high pressure and temperature. Am Mineral 94:1287–1290CrossRefGoogle Scholar
  119. Núñez O, Nakanishi K, Tanaka N (2008) Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A 1191:231–252CrossRefGoogle Scholar
  120. Oliveira MB, Oliveira VL, Coutinho JAP et al (2009) Thermodynamic modeling of the aqueous solubility of PAHs. Ind Eng Chem Res 48:5530–5536CrossRefGoogle Scholar
  121. Özel MZ, Clifford AA (2004) Superheated water extraction of fragrance compounds from Rosa canina. Flavour Fragrance J 19:354–359CrossRefGoogle Scholar
  122. Palmer DA, Fernández-Prini R, Harvey AH (eds) (2004) Aqueous systems at elevated temperatures and pressures. Physical chemistry in water, steam and hydrothermal solutions. Academic, LondonGoogle Scholar
  123. Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025CrossRefGoogle Scholar
  124. Pawlowski TM, Poole CF (1998) Extraction of thiabendazole and carbendazim from foods using pressurized hot (subcritical) water for extraction: a feasibility study. J Agric Food Chem 46:3124–3132CrossRefGoogle Scholar
  125. Petersson EV, Liu JY, Sjöberg PJR et al (2010) Pressurized hot water extraction of anthocyanins from red onion: a study on extraction and degradation rates. Anal Chim Acta 663:27–32CrossRefGoogle Scholar
  126. Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. TrAC—Trends Analyt Chem 31:9–22CrossRefGoogle Scholar
  127. Petr J, Ryparová O, Ranc V et al (2009) Assessment of CE for the identification of microorganisms. Electrophoresis 30:444–449CrossRefGoogle Scholar
  128. Planeta J, Moravcová D, Roth M et al (2010) Silica-based monolithic capillary columns: effect of preparation temperature on separation efficiency. J Chromatogr A 1217:5737–5740CrossRefGoogle Scholar
  129. Plaza M, Amigo-Benavent M, del Castillo MD et al (2010a) Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43:1123–1129CrossRefGoogle Scholar
  130. Plaza M, Amigo-Benavent M, del Castillo MD et al (2010b) Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res Int 43:2341–2348CrossRefGoogle Scholar
  131. Plaza M, Abrahamsson V, Turner C (2013) Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. J Agric Food Chem 61:5500–5510CrossRefGoogle Scholar
  132. Pól J, Varaďová Ostrá E, Karásek P et al (2007) Comparison of two different solvents employed for pressurized fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Anal Bioanal Chem 388:1847–1857CrossRefGoogle Scholar
  133. Polovka M, Št’avíková L, Hohnová B et al (2010) Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment. J Chromatogr A 1217:7990–8000CrossRefGoogle Scholar
  134. Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice-Hall, Upper Saddle River, pp 313–326Google Scholar
  135. Puy G, Roux R, Demesmay C et al (2007) Influence of the hydrothermal treatment on the chromatographic properties of monolithic silica capillaries for nano-liquid chromatography or capillary electrochromatography. J Chromatogr A 1160:150–159CrossRefGoogle Scholar
  136. Ramos L, Kristenson EM, Brinkman UAT (2002) Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A 975:3–29CrossRefGoogle Scholar
  137. Reichardt C (2004) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim, pp 62–66Google Scholar
  138. Richet P, Bottinga Y, Denielou L et al (1982) Thermodynamic properties of quartz, crystobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658CrossRefGoogle Scholar
  139. Righetti PG (2006) The Alpher, Bethe, Gamow of isoelectric focusing, the alpha-Centaury of electrokinetic methodologies. Part I. Electrophoresis 27:923–938CrossRefGoogle Scholar
  140. Righetti PG, Sebastiano R, Citterio A (2013) Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics 13:325–340CrossRefGoogle Scholar
  141. Rodriguez MA, Armstrong DW (2004) Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. J Chromatogr B 800:7–25CrossRefGoogle Scholar
  142. Rössling GL, Franck EU (1983) Solubility of anthracene in dense gases and liquids to 200 °C and 2000 bar. Ber Bunsen-Ges Phys Chem 87:882–890CrossRefGoogle Scholar
  143. Rovio S, Hartonen K, Holm Y et al (1999) Extraction of clove using pressurized hot water. Flavour Fragrance J 14:399–404CrossRefGoogle Scholar
  144. Ruzicka F, Horka M, Hola V et al (2007) Capillary isoelectric focusing—useful tool for detection of the biofilm formation in Staphylococcus epidermidis. J Microbiol Methods 68:530–535CrossRefGoogle Scholar
  145. Saldaña MDA, Alvarez VH, Haldar A (2012) Solubility and physical properties of sugars in pressurized water. J Chem Thermodyn 55:115–123CrossRefGoogle Scholar
  146. Šalplachta J, Kubesová A, Horká M (2012) Latest improvements in CIEF: from proteins to microorganisms. Proteomics 12:2927–2936CrossRefGoogle Scholar
  147. Šalplachta J, Kubesová A, Moravcová D et al (2013) Use of electrophoretic techniques and MALDI-TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”. Anal Bioanal Chem 405:3165–3175CrossRefGoogle Scholar
  148. Sanders ND (1986) Visual observation of the solubility of heavy hydrocarbons in near-critical water. Ind Eng Chem Fundam 25:169–171CrossRefGoogle Scholar
  149. Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603–621CrossRefGoogle Scholar
  150. Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414CrossRefGoogle Scholar
  151. Shaw RW, Brill TB, Clifford AA et al (1991) Supercritical water: a medium for chemistry. Chem Eng News 69:26–39Google Scholar
  152. Shen Y, Berger SJ, Smith RD (2000) Capillary isoelectric focusing of yeast cells. Anal Chem 72:4603–4607CrossRefGoogle Scholar
  153. Silván JM, van de Lagemaat J, Olano M et al (2006) Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J Pharm Biomed Anal 41:1543–1551CrossRefGoogle Scholar
  154. Silvertand LHH, Toraño JS, van Bennekom WP et al (2008) Recent developments in capillary isoelectric focusing. J Chromatogr A 1204:157–170CrossRefGoogle Scholar
  155. Siouffi A-M (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818CrossRefGoogle Scholar
  156. Škerget M, Knez Ž, Knez-Hrnčič M (2011) Solubility of solids in sub- and supercritical fluids: a review. J Chem Eng Data 56:694–719CrossRefGoogle Scholar
  157. Šlais K (1994) Model of electrophoretic focusing in a natural pH gradient moving in a tapered capillary. J Chromatogr A 684:149–161CrossRefGoogle Scholar
  158. Šlais K (1995a) Model of isotachophoresis (displacement electrophoresis) in tapered capillaries. Electrophoresis 16:2060–2068CrossRefGoogle Scholar
  159. Šlais K (1995b) Resolution of ampholytes focused in a natural pH gradient moving in a tapered capillary. J Microcol Sep 7:127–135CrossRefGoogle Scholar
  160. Šlais K (1996) Transient electrophoretic processes in capillaries of non-uniform cross-section. J Chromatogr A 730:247–259CrossRefGoogle Scholar
  161. Šlais K, Friedl Z (1994) Low-molecular-mass pI markers for isoelectric focusing. J Chromatogr A 661:249–256CrossRefGoogle Scholar
  162. Šlais K, Friedl Z (1995) Ampholytic dyes for spectroscopic determination of pH in electrofocusing. J Chromatogr A 695:113–122CrossRefGoogle Scholar
  163. Šlais K, Horká M, Nováčková J et al (2002) Fluorescein-based pI markers for capillary isoelectric focusing with laser-induced fluorescence detection. Electrophoresis 23:1682–1688CrossRefGoogle Scholar
  164. Šlais K, Horká M, Karásek P et al (2013) Isoelectric focusing in continuously tapered fused silica capillary prepared by etching with supercritical water. Anal Chem 85:4296–4300CrossRefGoogle Scholar
  165. Smith RM (2002) Extractions with superheated water. J Chromatogr A 975:31–46CrossRefGoogle Scholar
  166. Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Chim Acta 385:419–421Google Scholar
  167. Srinivas K, King JW, Howard LR et al (2010a) Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J Food Eng 100:208–218CrossRefGoogle Scholar
  168. Srinivas K, King JW, Howard LR et al (2010b) Solubility of gallic acid, catechin, and protocatechuic acid in subcritical water from (298.75 to 415.85) K. J Chem Eng Data 55:3101–3108CrossRefGoogle Scholar
  169. Št’avíková L, Polovka M, Hohnová B et al (2011) Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta 85:2233–2240CrossRefGoogle Scholar
  170. Stegehuis DS, Irthu H, Tjaden UR et al (1991) Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. J Chromatogr 538:393–402CrossRefGoogle Scholar
  171. Sun HW, Ge XS, Lv YK et al (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A 1237:1–23CrossRefGoogle Scholar
  172. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924CrossRefGoogle Scholar
  173. Svec F, Fréchet JMJ (1992) Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem 64:820–822CrossRefGoogle Scholar
  174. Takebayashi I, Sue K, Yoda S et al (2012) Solubility of terephthalic acid in subcritical water. J Chem Eng Data 57:1810–1816CrossRefGoogle Scholar
  175. Tanaka N, Kobayashi H, Ishizuka N et al (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35–49CrossRefGoogle Scholar
  176. Teo CC, Tan SN, Yong JWH et al (2008) Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume by pressurized hot water extraction and microwave-assisted extraction. J Chromatogr A 1182:34–40CrossRefGoogle Scholar
  177. Teo CC, Tan SN, Yong JWH et al (2010) Pressurized hot water extraction (PHWE). J Chromatogr A 1217:2484–2494CrossRefGoogle Scholar
  178. Teoh WH, Mammucari R, de Melo SABV et al (2013) Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind Eng Chem Res 52:5806–5814CrossRefGoogle Scholar
  179. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342CrossRefGoogle Scholar
  180. Tsai P-J, Yu T-Y, Chen S-H et al (2009) Interactive role of color and antioxidant capacity in caramels. Food Res Int 42:380–386CrossRefGoogle Scholar
  181. Turner C, Turner P, Jacobson G et al (2006) Subcritical water extraction and beta-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem 8:949–959CrossRefGoogle Scholar
  182. Uematsu M, Franck EU (1980) Static dielectric constant of water and steam. J Phys Chem Ref Data 9:1291–1304CrossRefGoogle Scholar
  183. Unger KK, Skudas R, Schulte MM (2008) Particle packed columns and monolithic columns in high-performance liquid chromatography–comparison and critical appraisal. J Chromatogr A 1184:393–415CrossRefGoogle Scholar
  184. Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Separ Sci 31:2521–2540CrossRefGoogle Scholar
  185. Vadillo V, Sanchez-Oneto J, Portela JR et al (2013) Problems in supercritical water oxidation process and proposed solutions. Ind Eng Chem Res 52:7617–7629CrossRefGoogle Scholar
  186. van Balen J (1984) Recovery of anthocyanins and other phenols from converting grapes into wine. M.S. thesis, University of California, DavisGoogle Scholar
  187. van Bavel B, Hartonen K, Rappe C et al (1999) Pressurised hot water/steam extraction of polychlorinated dibenzofurans and naphthalenes from industrial soil. Analyst 124:1351–1354CrossRefGoogle Scholar
  188. Verheggen TPEM, Mikkers FEP, Everaerts FM (1977) Isotachophoresis in narrow-bore tubes: influence of the diameter of the separation compartment. J Chromatogr 132:205–215CrossRefGoogle Scholar
  189. Wagner W, Overhoff U (2006) ThermoFluids. Interactive software for the calculation of thermodynamic properties for more than 60 pure substances. Springer, BerlinGoogle Scholar
  190. Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRefGoogle Scholar
  191. Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am J Sci 277:1315–1351CrossRefGoogle Scholar
  192. Walther JV, Orville PM (1983) The extraction–quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures. Am Mineral 68:731–741Google Scholar
  193. Weingärtner H, Franck EU (2005) Supercritical water as a solvent. Angew Chem Int Ed 44:2672–2692CrossRefGoogle Scholar
  194. Wiehe IA, Bagley EB (1967) Estimation of dispersion and hydrogen bonding energies in liquids. AIChE J 13:836–838CrossRefGoogle Scholar
  195. Wijngaard H, Hossain MB, Rai DK et al (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46:505–513CrossRefGoogle Scholar
  196. Wohlgemuth J, Karas M, Jiang W et al (2010) Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/RP18e)/ESI-MS analysis. J Separ Sci 33:880–890CrossRefGoogle Scholar
  197. Yang Y, Hildebrand F (2006) Phenanthrene degradation in subcritical water. Anal Chim Acta 555:364–369CrossRefGoogle Scholar
  198. Yang Y, Miller DJ, Hawthorne SB (1997) Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J Chem Eng Data 42:908–913CrossRefGoogle Scholar
  199. Yang Y, Kayan B, Bozer N et al (2007) Terpene degradation and extraction from basil and oregano leaves using subcritical water. J Chromatogr A 1152:262–267CrossRefGoogle Scholar
  200. Zhang DF, Montañés F, Srinivas K et al (2010) Measurement and correlation of the solubility of carbohydrates in subcritical water. Ind Eng Chem Res 49:6691–6698CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry of the ASCRBrnoCzech Republic

Personalised recommendations