Skip to main content

Direct and Indirect Applications of Sub- and Supercritical Water in Food-Related Analysis

  • Chapter
  • First Online:
High Pressure Fluid Technology for Green Food Processing

Abstract

In this chapter, a brief survey is presented of applications of subcritical and supercritical water in food-related analytical separations. As illustrated by numerous reports in the literature, direct applications of high-temperature water as an extraction agent or a chromatographic mobile phase are limited by the chemical stability of the particular target substances (analytes) in the high-temperature aqueous systems. With sensitive and easy-to-hydrolyze substances encountered in food-related analyses, the direct applications of water in the above roles are mostly limited to temperatures far below the critical temperature of water. In turn, promising indirect applications of sub- and/or supercritical water in analytical separations capitalize on the ability of high-temperature water to dissolve fused silica. Therefore, supercritical water can be used as a green agent to alter the internal diameter of fused-silica capillaries (e.g., to create an inlet taper) or to manipulate the roughness of their inner surfaces. The tapered capillaries have been shown to provide enhanced separation efficiency of capillary isoelectric focusing of amphoteric analytes (e.g., peptides and proteins) and microorganisms. The constant-diameter capillaries with roughened inner surfaces are expected to be useful in the preparation of monolithic silica-based capillary chromatographic columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adschiri T, Lee Y-W, Goto M et al (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390

    Article  CAS  Google Scholar 

  • Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  • Alvarez VH, Saldaña MDA (2011) Modeling solubility of polycyclic aromatic compounds in subcritical water. Ind Eng Chem Res 50:11396–11405

    Article  CAS  Google Scholar 

  • Anderson GM, Burnham CW (1965) The solubility of quartz in supercritical water. Am J Sci 263:494–511

    Article  CAS  Google Scholar 

  • Andersson T, Hartonen K, Hyötyläinen T et al (2003) Stability of polycyclic aromatic hydrocarbons in pressurised hot water. Analyst 128:150–155

    Article  CAS  Google Scholar 

  • Andersson TA, Hartonen KM, Riekkola M-L (2005) Solubility of acenaphthene, anthracene, and pyrene in water at 50 °C to 300 °C. J Chem Eng Data 50:1177–1183

    Article  CAS  Google Scholar 

  • Armstrong DW, Schulte G, Schneiderheinze JM et al (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71:5465–5469

    Article  CAS  Google Scholar 

  • Arrua RD, Talebi M, Causon TJ et al (2012) Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 738:1–12

    Article  CAS  Google Scholar 

  • Bandura AV, Lvov SN (2006) The ionization constant of water over wide ranges of temperature and density. J Phys Chem Ref Data 35:15–30

    Article  CAS  Google Scholar 

  • Basile A, Jiménez-Carmona MM, Clifford AA (1998) Extraction of rosemary by superheated water. J Agric Food Chem 46:5205–5209

    Article  CAS  Google Scholar 

  • Bermejo MD, Cocero MJ (2006) Supercritical water oxidation: a technical review. AIChE J 52:3933–3951

    Article  CAS  Google Scholar 

  • Brunner G (2001) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342

    Article  CAS  Google Scholar 

  • Brunner G (2009a) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47:373–381

    Article  CAS  Google Scholar 

  • Brunner G (2009b) Near critical and supercritical water. Part II. Oxidative processes. J Supercrit Fluids 47:382–390

    Article  CAS  Google Scholar 

  • Bucar F, Wube A, Schmid M (2013) Natural product isolation—how to get from biological material to pure compounds. Nat Prod Rep 30:525–545

    Article  CAS  Google Scholar 

  • Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  Google Scholar 

  • Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P et al (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17

    Article  CAS  Google Scholar 

  • Carbonnelle E, Mesquita C, Bille E et al (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109

    Article  CAS  Google Scholar 

  • Carr AG, Mammucari R, Foster NR (2010a) Solubility and micronization of griseofulvin in subcritical water. Ind Eng Chem Res 49:3403–3410

    Article  CAS  Google Scholar 

  • Carr AG, Mammucari R, Foster NR (2010b) Solubility, solubility modeling, and precipitation of naproxen from subcritical water solutions. Ind Eng Chem Res 49:9385–9393

    Article  CAS  Google Scholar 

  • Carr AG, Branch A, Mammucari R et al (2010c) The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J Supercrit Fluids 55:37–42

    Article  CAS  Google Scholar 

  • Carr AG, Mammucari R, Foster NR (2011) A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172:1–17

    Article  CAS  Google Scholar 

  • Chandler K, Eason B, Liotta CL et al (1998) Phase equilibria for binary aqueous systems from a near-critical water reaction apparatus. Ind Eng Chem Res 37:3515–3518

    Article  CAS  Google Scholar 

  • Chen C-TA, Marshall WL (1982) Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C. Geochim Cosmochim Acta 46:279–287

    Article  CAS  Google Scholar 

  • Co M, Koskela P, Eklund-Åkergren P et al (2009) Pressurized liquid extraction of betulin and antioxidants from birch bark. Green Chem 11:668–674

    Article  CAS  Google Scholar 

  • Dack MRJ (1975) Solvent structure. The use of internal pressure and cohesive energy density to examine contributions to solvent-solvent interactions. Aust J Chem 28:1643–1648

    Article  CAS  Google Scholar 

  • del Valle JM, de la Fuente JC, Srinivas K et al (2011) Correlation for the variations with temperature of solute solubilities in high temperature water. Fluid Phase Equilib 301:206–216

    Article  CAS  Google Scholar 

  • Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93

    Article  CAS  Google Scholar 

  • Dohrn R, Peper S, Fonseca JMS (2010) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000–2004). Fluid Phase Equilib 288:1–54

    Article  CAS  Google Scholar 

  • Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40

    Google Scholar 

  • Dolník V, Deml M, Boček P (1985) Large sample volume preseparation for trace analysis in isotachophoresis. J Chromatogr 320:89–97

    Article  Google Scholar 

  • Escandell J, Raspo I, Neau E (2014) Prediction of solid polycyclic aromatic hydrocarbons solubility in water, with the NRTL–PR model. Fluid Phase Equilib 362:87–95

    Article  CAS  Google Scholar 

  • Everaerts FM, Verheggen TPEM, Mikkers FEP (1979) Determination of substances at low concentrations in complex mixtures by isotachophoresis with column coupling. J Chromatogr 169:21–38

    Article  CAS  Google Scholar 

  • Fernández DP, Goodwin ARH, Lemmon EW et al (1997) A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J Phys Chem Ref Data 26:1125–1166

    Article  Google Scholar 

  • Fonseca JMS, Dohrn R, Peper S (2011) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Phase Equilib 300:1–69

    Article  CAS  Google Scholar 

  • Foret F, Šustáček V, Boček P (1990) On-line isotachophoretic sample preconcentration for enhancement of zone detectability in capillary zone electrophoresis. J Microcol Sep 2:229–233

    Article  Google Scholar 

  • Fornari T, Stateva RP, Señorans FJ et al (2008) Applying UNIFAC-based models to predict the solubility of solids in subcritical water. J Supercrit Fluids 46:245–251

    Article  CAS  Google Scholar 

  • Fornari T, Ibañez E, Reglero G et al (2011) Analysis of predictive thermodynamic models for estimation of polycyclic aromatic solid solubility in hot pressurized water. Open Thermodyn J 5(Suppl 1-M4):40–47

    Article  CAS  Google Scholar 

  • Fournier RO, Marshall WL (1983) Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water. Geochim Cosmochim Acta 47:587–596

    Article  CAS  Google Scholar 

  • Fournier RO, Rowe JJ (1977) The solubility of amorphous silica in water at high temperatures and high pressures. Am Mineral 62:1052–1056

    CAS  Google Scholar 

  • Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–1099

    Article  CAS  Google Scholar 

  • Fredenslund A, Gmehling J, Rasmussen P (1977) Vapor–liquid equilibria using UNIFAC. Elsevier, Amsterdam

    Google Scholar 

  • Gama MR, da Costa Silva RG, Collins CH et al (2012) Hydrophilic interaction chromatography. TrAC—Trends Analyt Chem 37:48–60

    Article  CAS  Google Scholar 

  • Gil-Chávez GJ, Villa JA, Ayala-Zavala JF et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23

    Article  CAS  Google Scholar 

  • Gil-Ramírez A, Mendiola JA, Arranz E et al (2012) Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innov Food Sci Emerg 16:54–60

    Article  CAS  Google Scholar 

  • Gmehling J (2009) Present status and potential of group contribution methods for process development. J Chem Thermodyn 41:731–747

    Article  CAS  Google Scholar 

  • Gmehling J, Li JD, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res 32:178–193

    Article  CAS  Google Scholar 

  • Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  • Hara T, Kobayashi H, Ikegami T et al (2006) Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal Chem 78:7632–7642

    Article  CAS  Google Scholar 

  • Hartonen K, Parshintsev J, Sandberg K et al (2007) Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta 74:32–38

    Article  CAS  Google Scholar 

  • Hawthorne SB, Yang Y, Miller DJ (1994) Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal Chem 66:2912–2920

    Article  CAS  Google Scholar 

  • Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817

    Article  CAS  Google Scholar 

  • Hemley JJ, Montoya JW, Marinenko JW et al (1980) Equilibria in the system Al2O3—SiO2–H2O and some general implications for alteration/mineralization processes. Econ Geol 75:210–228

    Article  CAS  Google Scholar 

  • Herrero M, Castro-Puyana M, Rocamora-Reverte L et al (2012) Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Res Int 47:31–37

    Article  CAS  Google Scholar 

  • Horie K, Ikegami T, Hosoya K et al (2007) Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J Chromatogr A 1164:198–205

    Article  CAS  Google Scholar 

  • Horká M, Willimann T, Blum M et al (2001) Capillary isoelectric focusing with UV-induced fluorescence detection. J Chromatogr A 916:65–71

    Article  Google Scholar 

  • Horká M, Planeta J, Růžička F et al (2003) Sol-gel column technology for capillary isoelectric focusing of microorganisms and biopolymers with UV or fluorometric detection. Electrophoresis 24:1383–1390

    Article  Google Scholar 

  • Horká M, Růžička F, Horký J et al (2006a) Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. J Chromatogr B 841:152–159

    Article  CAS  Google Scholar 

  • Horká M, Růžička F, Holá V et al (2006b) Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem 385:840–846

    Article  CAS  Google Scholar 

  • Horká M, Růžička F, Horký J et al (2006c) Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate. Anal Chem 78:8438–8444

    Article  CAS  Google Scholar 

  • Horká M, Horký J, Matoušková H et al (2009a) Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues. J Chromatogr A 1216:1019–1024

    Article  CAS  Google Scholar 

  • Horká M, Růžička F, Holá V et al (2009b) Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant. Anal Chem 81:6897–6904

    Article  CAS  Google Scholar 

  • Horká M, Horký J, Kubesová A et al (2010) Electromigration techniques—a fast and economical tool for differentiation of similar strains of microorganisms. Analyst 135:1636–1644

    Article  CAS  Google Scholar 

  • Horká M, Růžička F, Kubesová A et al (2011) Separation of phenotypically indistinguishable Candida species, C. orthopsilosis, C. metapsilosis and C. parapsilosis, by capillary electromigration techniques. J Chromatogr A 1218:3900–3907

    Article  CAS  Google Scholar 

  • Horká M, Karásek P, Šalplachta J et al (2013a) CIEF separation of probiotic bacteria from cow’s milk in tapered fused silica capillary with off-line MALDI-TOF MS identification. Anal Chim Acta 788:193–199

    Article  CAS  Google Scholar 

  • Horká M, Šalplachta J, Karásek P et al (2013b) Combination of capillary isoelectric focusing in tapered capillary with MALDI-TOF MS for rapid and reliable identification of Dickeya species from plant samples. Anal Chem 85:6806–6812

    Article  CAS  Google Scholar 

  • Ibañez E, Kubátová A, Señoráns FJ et al (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51:375–382

    Article  CAS  Google Scholar 

  • Ikegami T, Fujita H, Horie K et al (2006) HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide. Anal Bioanal Chem 386:578–585

    Article  CAS  Google Scholar 

  • Ikegami T, Horie K, Saad N et al (2008) Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 391:2533–2542

    Article  CAS  Google Scholar 

  • Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2006a) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water at temperatures from 313 K to the melting point. J Chem Eng Data 51:616–622

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2006b) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water: Correlation with pure component properties. Ind Eng Chem Res 45:4454–4460

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2007) Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene. J Chromatogr A 1140:195–204

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2008a) Solubilities of triptycene, 9-phenylanthracene, 9,10-dimethylanthracene, and 2-methylanthracene in pressurized hot water at temperatures from 313 K to the melting point. J Chem Eng Data 53:160–164

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2008b) Solubilities of adamantane and diamantane in pressurized hot water. J Chem Eng Data 53:816–819

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2008c) Simple first-order group contribution scheme for solubilities of solid polycyclic aromatic hydrocarbons and solid polycyclic aromatic heterocycles in pressurized hot water. Ind Eng Chem Res 47:620–626

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2009) Solubilities of oxygenated aromatic solids in pressurized hot water. J Chem Eng Data 54:1457–1461

    Article  CAS  Google Scholar 

  • Karásek P, Hohnová B, Planeta J et al (2010a) Solubility of solid ferrocene in pressurized hot water. J Chem Eng Data 55:2866–2869

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2010b) Group contribution correlation for aqueous solubilities of solid aromatics, heterocycles, and diamondoids over a 200 K temperature interval. Ind Eng Chem Res 49:3485–3491

    Article  CAS  Google Scholar 

  • Karásek P, Hohnová B, Planeta J et al (2013a) Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K. Chemosphere 90:2035–2040

    Article  CAS  Google Scholar 

  • Karásek P, Št’avíková L, Planeta J et al (2013b) Solubility of fused silica in sub- and supercritical water: estimation from a thermodynamic model. J Supercrit Fluids 83:72–77

    Article  CAS  Google Scholar 

  • Karásek P, Planeta J, Roth M (2013c) Near- and supercritical water as a diameter manipulation and surface roughening agent in fused silica capillaries. Anal Chem 85:327–333

    Article  CAS  Google Scholar 

  • Kayan B, Yang Y, Lindquist EJ et al (2010) Solubility of benzoic and salicylic acids in subcritical water at temperatures ranging from (298 to 473) K. J Chem Eng Data 55:2229–2232

    Article  CAS  Google Scholar 

  • Kennedy GC (1950) A portion of the system silica–water. Econ Geol 45:629–653

    Article  CAS  Google Scholar 

  • Ko M-J, Cheigh C-I, Chung M-S (2014) Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem 143:147–155

    Article  CAS  Google Scholar 

  • Koshel BM, Wirth MJ (2012) Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics 12:2918–2926

    Article  CAS  Google Scholar 

  • Kostal V, Arriaga EA (2008) Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis 29:2578–2586

    Article  CAS  Google Scholar 

  • Kremser L, Bilek G, Blaas D et al (2007) Capillary electrophoresis of viruses, subviral particles and virus complexes. J Separ Sci 30:1704–1713

    Article  CAS  Google Scholar 

  • Kronholm J, Hartonen K, Riekkola M-L (2007) Analytical extractions with water at elevated temperatures and pressures. TrAC—Trends Analyt Chem 26:396–412

    Article  CAS  Google Scholar 

  • Kruse A (2008) Supercritical water gasification. Biofuels, Bioprod Bioref 2:415–437

    Article  CAS  Google Scholar 

  • Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. J Supercrit Fluids 39:362–380

    Article  CAS  Google Scholar 

  • Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521

    Article  CAS  Google Scholar 

  • Kubátová A, Lagadec AJM, Miller DJ et al (2001) Selective extraction of oxygenates from savory and peppermint using subcritical water. Flavour Fragrance J 16:64–73

    Article  Google Scholar 

  • Lide DR (ed) (2004) Handbook of chemistry and physics on CD-ROM. Version 2004. CRC, Boca Raton

    Google Scholar 

  • Liebscher A (2010) Aqueous fluids at elevated pressure and temperature. Geofluids 10:3–19

    CAS  Google Scholar 

  • Lindahl S, Liu JY, Khan S et al (2013) An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glycosides from onions. Anal Chim Acta 785:50–59

    Article  CAS  Google Scholar 

  • Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85:583–589

    Article  CAS  Google Scholar 

  • Luque-Rodríguez JM, Luque de Castro MD, Pérez-Juan P (2007) Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresource Technol 98:2705–2713

    Article  CAS  Google Scholar 

  • Machida H, Takesue M, Smith RL (2011) Green chemical processes with supercritical fluids: properties, materials, separations and energy. J Supercrit Fluids 60:2–15

    Article  CAS  Google Scholar 

  • Malerod H, Rogeberg M, Tanaka N et al (2013) Large volume injection of aqueous peptide samples on a monolithic silica based zwitterionic-hydrophilic interaction liquid chromatography system for characterization of posttranslational modifications. J Chromatogr A 1317:129–137

    Article  CAS  Google Scholar 

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  CAS  Google Scholar 

  • Marrone PA (2013) Supercritical water oxidation—current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288

    Article  CAS  Google Scholar 

  • Marshall WL, Franck EU (1981) Ion product of water substance, 0–1000 °C, 1–10,000 bars. New international formulation and its background. J Phys Chem Ref Data 10:295–304

    Article  CAS  Google Scholar 

  • Mathis J, Gizir AM, Yang Y (2004) Solubility of alkylbenzenes and a model for predicting the solubility of liquid organics in high-temperature water. J Chem Eng Data 49:1269–1272

    Article  CAS  Google Scholar 

  • Mendiola JA, Herrero M, Cifuentes A et al (2007) Use of compressed fluids for sample preparation: food applications. J Chromatogr A 1152:234–246

    Article  CAS  Google Scholar 

  • Miller DJ, Hawthorne SB (1998) Method for determining the solubilities of hydrophobic organics in subcritical water. Anal Chem 70:1618–1621

    Article  CAS  Google Scholar 

  • Miller DJ, Hawthorne SB (2000a) Solubility of liquid organics of environmental interest in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:78–81

    Article  CAS  Google Scholar 

  • Miller DJ, Hawthorne SB (2000b) Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:315–318

    Article  CAS  Google Scholar 

  • Miller DJ, Hawthorne SB, Gizir AM et al (1998) Solubility of polycyclic aromatic hydrocarbons in subcritical water from 298 K to 498 K. J Chem Eng Data 43:1043–1047

    Article  CAS  Google Scholar 

  • Minakuchi H, Nakanishi K, Soga N et al (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  • Möller M, Nilges P, Harnisch F et al (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4:566–579

    Article  CAS  Google Scholar 

  • Morales FJ, Babbel M-B (2002) Antiradical efficiency of Maillard reaction mixtures in a hydrophilic media. J Agric Food Chem 50:2788–2792

    Article  CAS  Google Scholar 

  • Moravcová D, Planeta J, Kahle V et al (2012) Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J Chromatogr A 1270:178–185

    Article  CAS  Google Scholar 

  • Motokawa M, Kobayashi H, Ishizuka N et al (2002) Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J Chromatogr A 961:53–63

    Article  CAS  Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18

    Article  CAS  Google Scholar 

  • Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid I. Gel formation behavior and effect of solvent composition. J Non-Cryst Solids 139:1–13

    Article  CAS  Google Scholar 

  • Nerín C, Salafranca J, Aznar M et al (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393:809–833

    Article  CAS  Google Scholar 

  • Newton RC, Manning CE (2009) Hydration state and activity of aqueous silica in H2O-CO2 fluids at high pressure and temperature. Am Mineral 94:1287–1290

    Article  CAS  Google Scholar 

  • Núñez O, Nakanishi K, Tanaka N (2008) Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A 1191:231–252

    Article  CAS  Google Scholar 

  • Oliveira MB, Oliveira VL, Coutinho JAP et al (2009) Thermodynamic modeling of the aqueous solubility of PAHs. Ind Eng Chem Res 48:5530–5536

    Article  CAS  Google Scholar 

  • Özel MZ, Clifford AA (2004) Superheated water extraction of fragrance compounds from Rosa canina. Flavour Fragrance J 19:354–359

    Article  CAS  Google Scholar 

  • Palmer DA, Fernández-Prini R, Harvey AH (eds) (2004) Aqueous systems at elevated temperatures and pressures. Physical chemistry in water, steam and hydrothermal solutions. Academic, London

    Google Scholar 

  • Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025

    Article  CAS  Google Scholar 

  • Pawlowski TM, Poole CF (1998) Extraction of thiabendazole and carbendazim from foods using pressurized hot (subcritical) water for extraction: a feasibility study. J Agric Food Chem 46:3124–3132

    Article  CAS  Google Scholar 

  • Petersson EV, Liu JY, Sjöberg PJR et al (2010) Pressurized hot water extraction of anthocyanins from red onion: a study on extraction and degradation rates. Anal Chim Acta 663:27–32

    Article  CAS  Google Scholar 

  • Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. TrAC—Trends Analyt Chem 31:9–22

    Article  CAS  Google Scholar 

  • Petr J, Ryparová O, Ranc V et al (2009) Assessment of CE for the identification of microorganisms. Electrophoresis 30:444–449

    Article  CAS  Google Scholar 

  • Planeta J, Moravcová D, Roth M et al (2010) Silica-based monolithic capillary columns: effect of preparation temperature on separation efficiency. J Chromatogr A 1217:5737–5740

    Article  CAS  Google Scholar 

  • Plaza M, Amigo-Benavent M, del Castillo MD et al (2010a) Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43:1123–1129

    Article  CAS  Google Scholar 

  • Plaza M, Amigo-Benavent M, del Castillo MD et al (2010b) Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res Int 43:2341–2348

    Article  CAS  Google Scholar 

  • Plaza M, Abrahamsson V, Turner C (2013) Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. J Agric Food Chem 61:5500–5510

    Article  CAS  Google Scholar 

  • Pól J, Varaďová Ostrá E, Karásek P et al (2007) Comparison of two different solvents employed for pressurized fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Anal Bioanal Chem 388:1847–1857

    Article  CAS  Google Scholar 

  • Polovka M, Št’avíková L, Hohnová B et al (2010) Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment. J Chromatogr A 1217:7990–8000

    Article  CAS  Google Scholar 

  • Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice-Hall, Upper Saddle River, pp 313–326

    Google Scholar 

  • Puy G, Roux R, Demesmay C et al (2007) Influence of the hydrothermal treatment on the chromatographic properties of monolithic silica capillaries for nano-liquid chromatography or capillary electrochromatography. J Chromatogr A 1160:150–159

    Article  CAS  Google Scholar 

  • Ramos L, Kristenson EM, Brinkman UAT (2002) Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A 975:3–29

    Article  CAS  Google Scholar 

  • Reichardt C (2004) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim, pp 62–66

    Google Scholar 

  • Richet P, Bottinga Y, Denielou L et al (1982) Thermodynamic properties of quartz, crystobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658

    Article  CAS  Google Scholar 

  • Righetti PG (2006) The Alpher, Bethe, Gamow of isoelectric focusing, the alpha-Centaury of electrokinetic methodologies. Part I. Electrophoresis 27:923–938

    Article  CAS  Google Scholar 

  • Righetti PG, Sebastiano R, Citterio A (2013) Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics 13:325–340

    Article  CAS  Google Scholar 

  • Rodriguez MA, Armstrong DW (2004) Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. J Chromatogr B 800:7–25

    Article  CAS  Google Scholar 

  • Rössling GL, Franck EU (1983) Solubility of anthracene in dense gases and liquids to 200 °C and 2000 bar. Ber Bunsen-Ges Phys Chem 87:882–890

    Article  Google Scholar 

  • Rovio S, Hartonen K, Holm Y et al (1999) Extraction of clove using pressurized hot water. Flavour Fragrance J 14:399–404

    Article  CAS  Google Scholar 

  • Ruzicka F, Horka M, Hola V et al (2007) Capillary isoelectric focusing—useful tool for detection of the biofilm formation in Staphylococcus epidermidis. J Microbiol Methods 68:530–535

    Article  CAS  Google Scholar 

  • Saldaña MDA, Alvarez VH, Haldar A (2012) Solubility and physical properties of sugars in pressurized water. J Chem Thermodyn 55:115–123

    Article  CAS  Google Scholar 

  • Šalplachta J, Kubesová A, Horká M (2012) Latest improvements in CIEF: from proteins to microorganisms. Proteomics 12:2927–2936

    Article  CAS  Google Scholar 

  • Šalplachta J, Kubesová A, Moravcová D et al (2013) Use of electrophoretic techniques and MALDI-TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”. Anal Bioanal Chem 405:3165–3175

    Article  CAS  Google Scholar 

  • Sanders ND (1986) Visual observation of the solubility of heavy hydrocarbons in near-critical water. Ind Eng Chem Fundam 25:169–171

    Article  CAS  Google Scholar 

  • Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603–621

    Article  CAS  Google Scholar 

  • Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414

    Article  CAS  Google Scholar 

  • Shaw RW, Brill TB, Clifford AA et al (1991) Supercritical water: a medium for chemistry. Chem Eng News 69:26–39

    CAS  Google Scholar 

  • Shen Y, Berger SJ, Smith RD (2000) Capillary isoelectric focusing of yeast cells. Anal Chem 72:4603–4607

    Article  CAS  Google Scholar 

  • Silván JM, van de Lagemaat J, Olano M et al (2006) Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J Pharm Biomed Anal 41:1543–1551

    Article  CAS  Google Scholar 

  • Silvertand LHH, Toraño JS, van Bennekom WP et al (2008) Recent developments in capillary isoelectric focusing. J Chromatogr A 1204:157–170

    Article  CAS  Google Scholar 

  • Siouffi A-M (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818

    Article  CAS  Google Scholar 

  • Škerget M, Knez Ž, Knez-Hrnčič M (2011) Solubility of solids in sub- and supercritical fluids: a review. J Chem Eng Data 56:694–719

    Article  CAS  Google Scholar 

  • Šlais K (1994) Model of electrophoretic focusing in a natural pH gradient moving in a tapered capillary. J Chromatogr A 684:149–161

    Article  Google Scholar 

  • Šlais K (1995a) Model of isotachophoresis (displacement electrophoresis) in tapered capillaries. Electrophoresis 16:2060–2068

    Article  Google Scholar 

  • Šlais K (1995b) Resolution of ampholytes focused in a natural pH gradient moving in a tapered capillary. J Microcol Sep 7:127–135

    Article  Google Scholar 

  • Šlais K (1996) Transient electrophoretic processes in capillaries of non-uniform cross-section. J Chromatogr A 730:247–259

    Article  Google Scholar 

  • Šlais K, Friedl Z (1994) Low-molecular-mass pI markers for isoelectric focusing. J Chromatogr A 661:249–256

    Article  Google Scholar 

  • Šlais K, Friedl Z (1995) Ampholytic dyes for spectroscopic determination of pH in electrofocusing. J Chromatogr A 695:113–122

    Article  Google Scholar 

  • Šlais K, Horká M, Nováčková J et al (2002) Fluorescein-based pI markers for capillary isoelectric focusing with laser-induced fluorescence detection. Electrophoresis 23:1682–1688

    Article  Google Scholar 

  • Šlais K, Horká M, Karásek P et al (2013) Isoelectric focusing in continuously tapered fused silica capillary prepared by etching with supercritical water. Anal Chem 85:4296–4300

    Article  CAS  Google Scholar 

  • Smith RM (2002) Extractions with superheated water. J Chromatogr A 975:31–46

    Article  CAS  Google Scholar 

  • Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Chim Acta 385:419–421

    CAS  Google Scholar 

  • Srinivas K, King JW, Howard LR et al (2010a) Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J Food Eng 100:208–218

    Article  CAS  Google Scholar 

  • Srinivas K, King JW, Howard LR et al (2010b) Solubility of gallic acid, catechin, and protocatechuic acid in subcritical water from (298.75 to 415.85) K. J Chem Eng Data 55:3101–3108

    Article  CAS  Google Scholar 

  • Št’avíková L, Polovka M, Hohnová B et al (2011) Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta 85:2233–2240

    Article  CAS  Google Scholar 

  • Stegehuis DS, Irthu H, Tjaden UR et al (1991) Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. J Chromatogr 538:393–402

    Article  CAS  Google Scholar 

  • Sun HW, Ge XS, Lv YK et al (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A 1237:1–23

    Article  CAS  Google Scholar 

  • Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  • Svec F, Fréchet JMJ (1992) Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  • Takebayashi I, Sue K, Yoda S et al (2012) Solubility of terephthalic acid in subcritical water. J Chem Eng Data 57:1810–1816

    Article  CAS  Google Scholar 

  • Tanaka N, Kobayashi H, Ishizuka N et al (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35–49

    Article  CAS  Google Scholar 

  • Teo CC, Tan SN, Yong JWH et al (2008) Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume by pressurized hot water extraction and microwave-assisted extraction. J Chromatogr A 1182:34–40

    Article  CAS  Google Scholar 

  • Teo CC, Tan SN, Yong JWH et al (2010) Pressurized hot water extraction (PHWE). J Chromatogr A 1217:2484–2494

    Article  CAS  Google Scholar 

  • Teoh WH, Mammucari R, de Melo SABV et al (2013) Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind Eng Chem Res 52:5806–5814

    Article  CAS  Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  • Tsai P-J, Yu T-Y, Chen S-H et al (2009) Interactive role of color and antioxidant capacity in caramels. Food Res Int 42:380–386

    Article  CAS  Google Scholar 

  • Turner C, Turner P, Jacobson G et al (2006) Subcritical water extraction and beta-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem 8:949–959

    Article  CAS  Google Scholar 

  • Uematsu M, Franck EU (1980) Static dielectric constant of water and steam. J Phys Chem Ref Data 9:1291–1304

    Article  CAS  Google Scholar 

  • Unger KK, Skudas R, Schulte MM (2008) Particle packed columns and monolithic columns in high-performance liquid chromatography–comparison and critical appraisal. J Chromatogr A 1184:393–415

    Article  CAS  Google Scholar 

  • Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Separ Sci 31:2521–2540

    Article  CAS  Google Scholar 

  • Vadillo V, Sanchez-Oneto J, Portela JR et al (2013) Problems in supercritical water oxidation process and proposed solutions. Ind Eng Chem Res 52:7617–7629

    Article  CAS  Google Scholar 

  • van Balen J (1984) Recovery of anthocyanins and other phenols from converting grapes into wine. M.S. thesis, University of California, Davis

    Google Scholar 

  • van Bavel B, Hartonen K, Rappe C et al (1999) Pressurised hot water/steam extraction of polychlorinated dibenzofurans and naphthalenes from industrial soil. Analyst 124:1351–1354

    Article  Google Scholar 

  • Verheggen TPEM, Mikkers FEP, Everaerts FM (1977) Isotachophoresis in narrow-bore tubes: influence of the diameter of the separation compartment. J Chromatogr 132:205–215

    Article  CAS  Google Scholar 

  • Wagner W, Overhoff U (2006) ThermoFluids. Interactive software for the calculation of thermodynamic properties for more than 60 pure substances. Springer, Berlin

    Google Scholar 

  • Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  CAS  Google Scholar 

  • Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am J Sci 277:1315–1351

    Article  CAS  Google Scholar 

  • Walther JV, Orville PM (1983) The extraction–quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures. Am Mineral 68:731–741

    CAS  Google Scholar 

  • Weingärtner H, Franck EU (2005) Supercritical water as a solvent. Angew Chem Int Ed 44:2672–2692

    Article  CAS  Google Scholar 

  • Wiehe IA, Bagley EB (1967) Estimation of dispersion and hydrogen bonding energies in liquids. AIChE J 13:836–838

    Article  CAS  Google Scholar 

  • Wijngaard H, Hossain MB, Rai DK et al (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46:505–513

    Article  CAS  Google Scholar 

  • Wohlgemuth J, Karas M, Jiang W et al (2010) Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/RP18e)/ESI-MS analysis. J Separ Sci 33:880–890

    Article  CAS  Google Scholar 

  • Yang Y, Hildebrand F (2006) Phenanthrene degradation in subcritical water. Anal Chim Acta 555:364–369

    Article  CAS  Google Scholar 

  • Yang Y, Miller DJ, Hawthorne SB (1997) Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J Chem Eng Data 42:908–913

    Article  CAS  Google Scholar 

  • Yang Y, Kayan B, Bozer N et al (2007) Terpene degradation and extraction from basil and oregano leaves using subcritical water. J Chromatogr A 1152:262–267

    Article  CAS  Google Scholar 

  • Zhang DF, Montañés F, Srinivas K et al (2010) Measurement and correlation of the solubility of carbohydrates in subcritical water. Ind Eng Chem Res 49:6691–6698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Czech Science Foundation (Projects P206/11/0138, P503/11/P523 and P106/12/0522), of the Ministry of Interior of the Czech Republic (Projects VG20102015023 and VG20112015021), and of the Academy of Sciences of the Czech Republic (Institutional Support RVO:68081715) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roth, M. et al. (2015). Direct and Indirect Applications of Sub- and Supercritical Water in Food-Related Analysis. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_8

Download citation

Publish with us

Policies and ethics