Advertisement

Particle Formation of Food Ingredients by Supercritical Fluid Technology

  • Irene Rodríguez-Meizoso
  • Merichel Plaza
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Size reduction of food ingredients is associated with easier processing and increased bioavailability for nutritional purposes. In this chapter, particle formation techniques based on supercritical fluids such as rapid expansion of supercritical solutions (RESS), supercritical antisolvent (SAS) and particles from gas saturated solutions (PGSS™), used to obtain micro- and nanosized particles of food ingredients are described. Criteria for process selection and guidelines for implementation of processes are discussed. Specific applications are also presented, including hyphenation techniques. The reader is provided with an overview of the different processes applied so far for the particle formation of carotenoids, phenolic compounds, sterols, probiotics, vitamins, proteins, lipids and their encapsulates.

Keywords

Supercritical fluids Particle formation RESS SAS SEDS SFEE PGSS ScMM WEPO OEPO Food ingredients 

Notes

Acknowledgements

IRM thanks The Swedish Research Council (VR, 2012-4124), The Crafoord Foundation (2013-0763) and the Swedish Foundation for Strategic Research (SSF, 2005:0073/13) for supporting her work. MP thanks the Swedish Research Council Formas (229-2009-1527) (SuReTech) and the Antidiabetic Food Centre, a VINNOVA VINN Excellence Centre at Lund University (Sweden) for supporting her work.

References

  1. Andersson JM, Lindahl S, Turner C et al (2012) Pressurised hot water extraction with on-line particle formation. Food Chem 134:1724–1731CrossRefGoogle Scholar
  2. Cafara M, Marianecci C, Codeca S et al (2006) Retinylpalmitate-loaded vesicles: influence on vitamin light-induced degradation. J Drug Deliv Sci Tech 16:407–412Google Scholar
  3. Can Q, Carlfors J, Turner C (2009) Carotenoids particle formation by supercritical fluid technologies. Chin J Chem Eng 17:344–349CrossRefGoogle Scholar
  4. Chattopadhyay P, Shekunov BY, Seitzinger J et al (2006) US Patent US6998051 B2Google Scholar
  5. Chaudhary A, Nagaich U, Gulati N et al (2012) Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. JAPER 2:2249–3370Google Scholar
  6. Cismondi M, Michelsen M, Zabaloy M (2009) GPEC: global phase equilibrium calculations. http://www.gpec.efn.uncor.edu/
  7. Cocero MJ, Martín A, Mattea F et al (2009) Encapsulation and co precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555CrossRefGoogle Scholar
  8. Colussi S, Elvassore N, Kikic I (2006) A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes. J Supercrit Fluids 39:118–126CrossRefGoogle Scholar
  9. De Paz E, Martín A, Cocero MJ (2012) Formulation of B-carotene with soybean lecithin by PGSS (Particle from Gas Saturated Solutions)-drying. J Supercrit Fluids 72:125–133CrossRefGoogle Scholar
  10. Diez-Municio M, Montilla A, Herrero M et al (2011) Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids 57:73–79CrossRefGoogle Scholar
  11. Diplock AT, Aggett M, Ashwell M et al (1999) Scientific concepts of functional foods in Europe: consensus document. Brit J Nutr 81:S1–S27CrossRefGoogle Scholar
  12. Dohrn R, Fonseca JMS, Peper S (2012) Experimental methods for phase equilibria at high pressures. Annu Rev Chem Biomol Eng 3:343–367CrossRefGoogle Scholar
  13. Ezhilarasi PN, Karthik P, Chhanwal N et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Tech 6:628–647CrossRefGoogle Scholar
  14. Franceschi E, De Cesaro AM, Ferreira SRS et al (2009) Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2. J Food Eng 95:656–663CrossRefGoogle Scholar
  15. Gupta RB, Shim JJ (2007) Solubility in supercritical carbon dioxide. CRC, Boca RatonGoogle Scholar
  16. Hanna M, York P (1998) US Patent 5,851,453Google Scholar
  17. Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC, Boca RatonGoogle Scholar
  18. He WZ, Suo QL, Jiang ZH et al (2004) Precipitation of ephedrine by SEDS process using a specially designed prefilming atomizer. J Supercrit Fluids 31:101–110Google Scholar
  19. Herrero M, Plaza M, Cifurentes A et al (2010) Green processes for the extraction of bioactives from rosemary: chemical and functional characterization via UPLC-MS/MS and in-vitro assays. J Chromatogr A 1217:2512–2520Google Scholar
  20. Heyang J, Fei X, Cuilan J et al (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin J Chem Eng 17:672–677CrossRefGoogle Scholar
  21. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46:185–196CrossRefGoogle Scholar
  22. Hong HL, Suo QL, Han LH et al (2009) Study on precipitation of astaxanthin in supercritical fluid. Power Technol 191:294–298CrossRefGoogle Scholar
  23. Ibanez E, Cifuentes A, Rodriguez-Meizoso I et al (2009) Spanish patent no P200900164Google Scholar
  24. Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219CrossRefGoogle Scholar
  25. Kikic I, De Zordi N, Moneghini M et al (2010) Solubility estimation of drugs in ternary systems of interest for the antisolvent precipitation processes. J Supercrit Fluids 55:616–622CrossRefGoogle Scholar
  26. Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid St M 7:353–361CrossRefGoogle Scholar
  27. Koushan K, Rusovici R, Li W, Fergusson LR, Chalam KV (2013) The role of lutein in eye-related disease. Nutrients 5:1823–1839Google Scholar
  28. Lubary M, Loos TW, Horst JH et al (2011) Production of microparticles from milk fat products using the supercritical melt micronization (ScMM) process. J Supercrit Fluids 55:1079–1088CrossRefGoogle Scholar
  29. Magnan C, Badens E, Commenges N et al (2000) Soy lecithin micronization by precipitation with a compressed fluid antisolvent—influence of process parameters. J Supercrit Fluids 19:69–77CrossRefGoogle Scholar
  30. Mamvura CI, Moolman FS, Kalombo L et al (2011) Characterisation of the poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonicacid) (PVP:PVAc-CA) interpolymer complex matrix microparticles encapsulating a Bifidobacteriumlactis Bb12 probiotic strain. Probiotics Antimicrob Proteins 3:97–102CrossRefGoogle Scholar
  31. Martín A, Cocero MJ (2004) Numeric modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the SAS process. J Supercrit Fluids 12:249–258Google Scholar
  32. Martín A, Mattea F, Gutiérrez L et al (2007) Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. J Supercrit Fluids 41:138–147CrossRefGoogle Scholar
  33. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice. Butterworth-Heinemann, NewtonGoogle Scholar
  34. Moolman FS, Labuschagne PW, Thantsa MS et al (2006) Encapsulating probiotics with an interpolymer complex in supercritical carbon dioxide. S Afr J Sci 102:349–354Google Scholar
  35. Moribe K, Maruyama S, Inoue Y et al (2010) Ascorbyldipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Int J Pharm 387:236–243CrossRefGoogle Scholar
  36. Nunes AVM, Duarte CMM (2011) Dense CO2 as a solute, co-solute, or co-solvent in particle formation processes: a review. Materials 4:2017–2041CrossRefGoogle Scholar
  37. Perrut M, Jung J, Leboeuf F (2002) International patent no. WO2002092213 A1Google Scholar
  38. Plösch T, Kruit JK, Bloks VW et al (2006) Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 Transporter. J Nutr 136:2135–2140Google Scholar
  39. Ras RT, Hiemstra H, Lin Y et al (2013) Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations—a meta-analysis of randomized controlled studies. Atherosclerosis 230:336–346CrossRefGoogle Scholar
  40. Reverchon E, Adami R (2006) Review: nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22CrossRefGoogle Scholar
  41. Rodríguez-Meizoso I, Castro-Puyana M, Börjesson P et al (2012) Life cycle assessment of green pilot-scale extraction to obtain potent antioxidants from rosemary leaves. J Supercrit Fluids 72:205–212CrossRefGoogle Scholar
  42. Rossmann M, Braeuer A, Dowy S et al (2012) Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. J Supercrit Fluids 66:350–358Google Scholar
  43. Sahebkar A (2013) Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia. Biochim Biophys Acta 1831:887–893CrossRefGoogle Scholar
  44. Sane A, Limtrakul J (2009) Formation of retinylpalmitate-loaded poly(L-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV). J Supercrit Fluids 51:230–237CrossRefGoogle Scholar
  45. Santos DT, Meireles MAA (2013) Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J Food Process Eng 36:36–49CrossRefGoogle Scholar
  46. Schumann C (2002) Medical, nutritional and technological properties of lactulose. An update. Eur J Nutr 41:17–25CrossRefGoogle Scholar
  47. Shariati A, Peters CJ (2002) Measurements and modeling of the phase behavior of ternary systems of interest for the GAS process: I. The system carbon dioxide + 1-propanol + salicyclic acid. J Supercrit Fluids 23:195–208CrossRefGoogle Scholar
  48. Sievers RE, Karst U (1995) European patent no. 0 677 332, 1995Google Scholar
  49. Skerget M, Knez Z, Knez-Hrncic M (2011) Solubility of solids in sub- and supercritical fluids: a review. J Chem Eng Data 56:694–719CrossRefGoogle Scholar
  50. Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyldipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agr Food Chem 60:5388–5399CrossRefGoogle Scholar
  51. Srinivasan K (2014) Antioxidant potential of spices and their active constituents. Crit Rev Food Sci 54:352–372CrossRefGoogle Scholar
  52. Strumendo M, Bertucco A, Elvassore N (2007) Modeling of particle formation processes using gas saturated solution atomization. J Supercrit Fluids 41:115–125CrossRefGoogle Scholar
  53. Su CS (2013) Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave–Redlich–Kwong (PSRK) equation of state. Chem Eng Res Des 91:1163–1169CrossRefGoogle Scholar
  54. Sun YP, Rollins HW, Bandara J et al (2002) Preparation and processing of nanoscale materials by supercritical fluid technology. In: Sun YP (ed) Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications. Marcel Dekker, New York, pp 491–576CrossRefGoogle Scholar
  55. Szliszka E, Zydowicz G, Mizgala E et al (2012) Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 41:818–828Google Scholar
  56. Tenorio A, Jaeger P, Gordillo MD et al (2009) On the selection of limiting hydrodynamic conditions for the supercritical antisolvent (SAS) process. Ind Eng Chem Res 48:9224–9232CrossRefGoogle Scholar
  57. Türk M (1999) Formation of small organic particles by RESS: experimental and theoretical investigations. J Supercrit Fluids 15:79–89CrossRefGoogle Scholar
  58. Türk M (2009) Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes. J Supercrit Fluids 47:537–545CrossRefGoogle Scholar
  59. Türk M, Lietzow R (2004) Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution. AAPS Pharm Sci Tech 5:36–45CrossRefGoogle Scholar
  60. Türk M, Hils P, Helfgen B et al (2002) Micronization of pharmaceutical substances by Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J Supercrit Fluids 22:75–84CrossRefGoogle Scholar
  61. Türk M, Upper G, Hils P (2006) Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids. J Supercrit Fluids 39:253–263CrossRefGoogle Scholar
  62. Van Konynenburg PH, Scott RL (1980) Critical lines and phase equilibria in binary van der Waals mixtures. Phil Trans R Soc A 298:495–540CrossRefGoogle Scholar
  63. Ventosa N, Sala S, Veciana J (2001) Depressurization of an expanded liquid organic solution (DELOS): a new procedure for obtaining submicron- or micron-sized crystalline particles. Crys Growth Des 1:299–303CrossRefGoogle Scholar
  64. Ventosa N, Veciana J, Rovira C et al (2002) International patent no. WO0216003 A1Google Scholar
  65. Vermuri PK, Velampaty RHP, Tipparaju SL (2014) Probiotics: a novel approach in improving the values of human life. Int J Pharm Pharm Sci 6:41–43Google Scholar
  66. Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47:556–565CrossRefGoogle Scholar
  67. Wellwood CRL, Cole RA (2004) Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J Agr Food Chem 52:6101–6107CrossRefGoogle Scholar
  68. Wu JJ, Shen CT, Jong TT et al (2009) Supercritical carbon dioxide anti-solvent process for purification of micronized propolis particulates and associated anti-cancer activity. Sep Purif Technol 70:190–198CrossRefGoogle Scholar
  69. Young TJ, Mawson S, Johnston KP et al (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog 16:402–407CrossRefGoogle Scholar
  70. Zhong Q, Jin M, Tian H et al (2008) Application of supercritical anti-solvent technologies for the synthesis of delivery systems of bioactive food components. Food Biophys 3:186–190CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryCentre for Analysis and Synthesis, Lund UniversityLundSweden

Personalised recommendations