Advertisement

Thermophysical Properties of Pure Substances in the Context of Sustainable High Pressure Food Processes Modelling

  • Tiziana Fornari
  • Roumiana P. StatevaEmail author
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Knowledge of phase equilibria behaviour of food substances and green solvents under high pressure conditions is required to exploit to the full the advantages of high pressure fluid technology for green food processing. Data are currently available for quite a large number of systems at a wide range of conditions; still experimental measurement of high pressure phase equilibria is often difficult, expensive and time consuming. Thus, there is a demand for effective thermodynamic models to describe high pressure phase equilibria of solvents and natural substances. An essential element of these models is information about pure components thermophysical properties and, in the case when those are not available, capability to estimate them.

In this chapter the framework targeted on modelling the thermodynamics of processes utilizing high pressure fluids will be outlined and an update of the available methods to estimate thermophysical properties of pure natural substances is summarized.

Keywords

Thermophysical properties Supercritical phase equilibria Food processes modelling Pure component properties Critical parameters Melting properties 

Notes

Acknowledgements

T.F. acknowledges the financial support from Comunidad de Madrid (project ALIBIRD-S2009/AGR-1469). R.P. St. acknowledges the financial support from the Bulgarian Science Fund, Ministry of Education and Science (CONTRACT GRANT No: Б01/23).

References

  1. Abrams DS, Massaldi HA, Prausnitz JM (1974) Vapor pressures of liquids as a function of temperature. Two-parameter equation based on kinetic theory of fluids. Ind Eng Chem Fund 13:259–262CrossRefGoogle Scholar
  2. Abramowitz R, Yalkowsky SH (1990) Melting point, boiling point and symmetry. Pharm Res 7:942CrossRefGoogle Scholar
  3. Ambrose D (1978) Correlation and estimation of vapor–liquid critical properties. I. Critical temperatures of organic compounds. NPL Report Chem. 92. National Physical Laboratory, TeddingtonGoogle Scholar
  4. Ambrose D (1980) Correlation and estimation of vapor-liquid critical properties: II. Critical pressure and critical volume of organic compounds. NPL Rep. Chem. 107. National Physical Laboratory, TeddingtonGoogle Scholar
  5. Ambrose D, Young CL (1995) Vapor-liquid critical properties of elements and compounds 1. An introduction survey. J Chem Eng Data 40:345–357CrossRefGoogle Scholar
  6. Ambrose D, Tsonopoulos C (1995) Vapor-liquid critical properties of elements and compounds. 2. Normal alkanes. J Chem Eng Data 40:531–546CrossRefGoogle Scholar
  7. Apostolou DA, Kalospiros NS, Tassios DP (1995) Prediction of gas solubilities using the LCVM equation of state/excess Gibbs energy model. Ind Eng Chem Res 34:948–957CrossRefGoogle Scholar
  8. Ashwell M (2004) Conceptos sobre los alimentos funcionales. International Life Sciences Institute (ILSI). Spanish translation. ILSI, BruselasGoogle Scholar
  9. Barley MH, Topping DO, McFiggans G (2013) Critical assessment of liquid density estimation methods for multifunctional organic compounds and their use in atmospheric science. J Phys Chem A 117:3428–3441CrossRefGoogle Scholar
  10. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  11. Brauner N, Cholakov GSt, Kahrs O, Stateva RP, Shacham M (2008) Linear QSPRs for predicting pure compound properties in homologous Series. AIChE J 54:978–990Google Scholar
  12. Brauner N, Shacham M (2013) Prediction of normal melting point of pure substances by a reference series method. AIChE J 59:3730–3740CrossRefGoogle Scholar
  13. Chen MM, Ma PS (2004) Solid-liquid equilibria of several systems containing acetic acid. J Chem Eng Data 49:756–759CrossRefGoogle Scholar
  14. Chickos JS, Hesse DG, Liebman JF (1990) Estimating entropies and enthalpies of fusion of hydrocarbons. J Org Chem 55:3833–3840CrossRefGoogle Scholar
  15. Chickos JS, Braton CM, Hesse DG et al (1991) Estimating entropies and enthalpies of fusion of organic compounds. J Org Chem 56:927–938CrossRefGoogle Scholar
  16. Cholakov GSt, Wakeham WA, Stateva RP (1999) Estimation of normal boiling points of hydrocarbons from descriptors of molecular structure. Fluid Phase Equilib 163:21–42Google Scholar
  17. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021CrossRefGoogle Scholar
  18. Constantinou L, Prickett SE, Mavrovouniotis ML (1994) Estimation of properties of acyclic organic compounds using conjugation operators. Ind Eng Chem Res 33:395–402CrossRefGoogle Scholar
  19. Constantinou L, Gani R (1994) New group-contribution method for estimating properties of pure compounds. AIChE J 40:1697–1710CrossRefGoogle Scholar
  20. Coutsikos P, Magoulas K, Kontogeorgis GM (2003) Prediction of solid-gas equilibria with the Peng-Robinson equation of state. J Supercrit Fluids 25:197–212CrossRefGoogle Scholar
  21. Crampon C, Trassy L, Avaullee L et al (2004) Simplification and extension of a predictive group contribution method for estimating heavy organic pure compound vapor pressures I. Hydrocarbons. Fluid Phase Equilib 216:95–109CrossRefGoogle Scholar
  22. Dahl S, Fredenslund A, Rassmusen P (1991) The MHV2 model: a UNIFAC-based equation of state model for prediction of gas solubility and vapor-liquid equilibria at low and high pressures. Ind Eng Chem Res 30:1936–1945CrossRefGoogle Scholar
  23. Dalmazzone D, Salmon A, Guella S (2006) A second order group contribution method for the prediction of critical temperatures and enthalpies of vaporization of organic compounds. Fluid Phase Equilib 242:29–42CrossRefGoogle Scholar
  24. Dannenfelser RM, Yalkowsky SH (1996) Estimation of entropy of melting from molecular structure: a non-group contribution method. Ind Eng Chem Res 35:1483–1486CrossRefGoogle Scholar
  25. Dearden JC, Rahman MH (1988) QSAR approach to the prediction of melting points of substituted anilines. Math Comput Model 11:843CrossRefGoogle Scholar
  26. Dearden JC (2003) Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem 22:1696–1709CrossRefGoogle Scholar
  27. Del Valle JM, Aguilera JM (1988) An improved equation for prediction the solubility of vegetable oils in supercritical CO2. Ind Eng Chem Res 27:1551–1553CrossRefGoogle Scholar
  28. Edminster WC (1958) Applied hydrocarbon thermodynamics Part 4. Compressibility factors and equations of state. Pet Refin 37:173–179Google Scholar
  29. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Eng Sci 14:147–154CrossRefGoogle Scholar
  30. Fornari T (2007) Revision and summary of the group contribution equation of state parameter table: application to edible oil constituents. Fluid Phase Equilib 262:187–209CrossRefGoogle Scholar
  31. Fornari T, Hernández EJ, Reglero G (2009) Solubility of supercritical gases in organic liquids. J Supercrit Fluids 51:115–122CrossRefGoogle Scholar
  32. Fornari T, Luna P, Stateva RP (2010) The vdW EoS hundred years later; yet younger than before. Application to the phase equilibria modeling of food-type systems for a green technology. J Supercrit Fluids 55:579–593CrossRefGoogle Scholar
  33. Gani R, Constantinou L (1996) Molecular structure based estimation of properties for process design. Fluid Phase Equilib 116:75–86CrossRefGoogle Scholar
  34. Garnier S, Neau E, Alessi P et al (1999) Modelling solubility of solids in supercritical fluids using fusion properties. Fluid Phase Equilib 158–160:491–500CrossRefGoogle Scholar
  35. Gharagheizi F, Alamdari RF, Angaji MT (2008) A new neural network − group contribution method for estimation of flash point temperature of pure components. Energy Fuels 22:1628–1635CrossRefGoogle Scholar
  36. Gharagheizi F, Mirkhani SA, Ilani-Kashkouli P et al (2013) Determination of the normal boiling point of chemical compounds using a quantitative structure–property relationship strategy: application to a very large dataset. Fluid Phase Equilib 354:250–258CrossRefGoogle Scholar
  37. Godavarthy SS, Robinson RL, Gasem KAM (2006) An improved structure property model for predicting melting point temperatures. Ind Eng Chem Res 45:5117–5126CrossRefGoogle Scholar
  38. Gold PI, Ogle GJ (1969) Estimating thermophysical properties of liquids. Part 4 s: boiling, freezing and triple-point temperatures. Chem Eng 76:119Google Scholar
  39. Goodman BT, Wilding W, Oscarson JL et al (2004) A note on the relationship between organic solid density and liquid density at the triple point. J Chem Eng Data 49:1512–1514CrossRefGoogle Scholar
  40. Güçlü-Üstündag O, Temelli F (2000) Correlating the solubility behavior of fatty acids, mono-, di-and triglycerides, and fatty acid esters in supercritical carbon dioxide. Ind Eng Chem Res 39:4756–4766CrossRefGoogle Scholar
  41. Güçlü-Üstündag O, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31:235–253CrossRefGoogle Scholar
  42. Hajipour S, Satyro MA (2011) Uncertainty analysis applied to thermodynamic models and process design 1. Pure components. Fluid Phase Equilib 307:78–94CrossRefGoogle Scholar
  43. Hernández EJ, Fornari T, Reglero G (2011) Correlating the solubility of supercritical gases in high molecular weight substances using a density-dependent equation. AIChE J 57:765–771CrossRefGoogle Scholar
  44. Hughes LD, Palmer DS, Nigsch F et al (2008) Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P. J Chem Inf Model 48:220–232CrossRefGoogle Scholar
  45. Jago D (2009) Functional foods, market trends. In: Functional foods symposium. Mintel, AmsterdamGoogle Scholar
  46. Jain A, Yang G, Yalkowsky SH (2004) Estimation of total entropy of melting of organic compounds. Ind Eng Chem Res 43:4376–4379CrossRefGoogle Scholar
  47. Jain A, Yalkowsky SH (2006) Estimation of melting points of organic compounds-II. J Pharm Sci 95:2562–2618CrossRefGoogle Scholar
  48. Jiao T, Zhuang X, Li C et al (2014) A benzene chain-based contribution method for prediction of physical properties of aromatic compounds. Fluid Phase Equilib 361:60–68CrossRefGoogle Scholar
  49. Joback KG (1984) A unified approach to physical property estimation using multivariate statistical techniques, S.M. thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  50. Joback KG, Reid RC (1987) Estimation of pure component properties from group contributions. Chem Eng Commun 57:233CrossRefGoogle Scholar
  51. Kikic I, Lora M, Bertucco A (1997) A thermodynamic analysis of three phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS). Ind Eng Chem Res 36:5507–5515CrossRefGoogle Scholar
  52. Lazzus JA (2009) Hybrid method to predict melting points of organic compounds using group contribution plus neural network plus particle swarm algorithm. Ind Eng Chem Res 48:8760–8766CrossRefGoogle Scholar
  53. Lee BI, Kesler MG (1975) A generalised thermodynamic correlation based on three-parameter corresponding states. AIChE J 17:1412–1418CrossRefGoogle Scholar
  54. Lydersen AL (1955) Estimation of critical properties of organic compounds, College Engineering University Wisconsin, Engineering Experimental Station Report 3, MadisonGoogle Scholar
  55. Lyman WJ (1985) Environmental exposure from chemicals, vol I. CRC, Boca RatonGoogle Scholar
  56. Marrero J, Gani R (2001) Group-contribution based estimation of pure component properties. Fluid Phase Equilib 183–184:183–208CrossRefGoogle Scholar
  57. Marrero-Morejon J, Pardillo-Fontdevila E (1999) Estimation of pure compound properties using group-interaction contributions. AIChE J 45:615–621Google Scholar
  58. Martinez-Correa HA, Gomes DCA, Kanehisa SL et al (2010) Measurements and thermodynamic modelling of the solubility of squalene in supercritical carbon dioxide. J Food Eng 96:43–50CrossRefGoogle Scholar
  59. McHugh MA, Watkins JJ, Doyle BT et al (1988) High-pressure naphthalene-xenon phase behavior. Ind Eng Chem Res 27:1025–1033CrossRefGoogle Scholar
  60. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice, 2nd edn. Butterworth-Heine, BostonGoogle Scholar
  61. Nannoolal Y, Rarey J, Ramjugernath D (2007) Estimation of pure component properties: part 2. Estimation of critical property data by group contribution. Fluid Phase Equilib 252:1–27CrossRefGoogle Scholar
  62. Neau E, Garnier S, Alessi P et al (1996) Modeling solubility of biological compounds in supercritical fluids. In: von Rohr PR, Trepp C (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 265–270Google Scholar
  63. Neau E, Garnier S, Avaullee SL (1999) A consistent estimation of sublimation pressures using a cubic equation of state and fusion properties. Fluid Phase Equilib 164:173–186CrossRefGoogle Scholar
  64. Orbey H, Sandler SI (1998) Modeling vapor–liquid equilibria. Cubic equations of state and their mixing rules. Cambridge University, CambridgeGoogle Scholar
  65. Prausnitz JM, Lichtenthaler RN, Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria. Prentice Hall, Englewood CliffsGoogle Scholar
  66. Perry RH, Green DW (eds) (1999) Perry’s chemical engineers’ handbook. McGraw Hill, New York, p 361Google Scholar
  67. Pfohl O, Giese T, Dohrn R et al (1998) Comparison of 12 equations of state with respect to gas-extraction processes: reproduction of pure-component properties when enforcing the correct critical temperature and pressure. Ind Eng Chem Res 37:2957–2965CrossRefGoogle Scholar
  68. Pitzer KS (1955) The volumetric and thermodynamic properties of fluids. I: theoretical basis and virial coefficients. J Am Chem Soc 77:107–113CrossRefGoogle Scholar
  69. Poling JBE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  70. Preiss UP, Beichel W, Erle AMT et al (2011) Is universal, simple melting point prediction possible? Chem Phys Chem 12:2959–2972Google Scholar
  71. Quintero FA, Felipe Muñoz F, Sam Mannan M (2012) Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system. Ind Eng Chem Res 51:16101–16115CrossRefGoogle Scholar
  72. Rackett HG (1970) Equation of state for saturated liquids. J Chem Eng Data 15:514–517CrossRefGoogle Scholar
  73. Reverchon E, Della Porta G, Taddeo R et al (1995) Solubility and micronization of griseofulvin in supercritical CHF 3. Ind Eng Chem Res 4:4087–4091CrossRefGoogle Scholar
  74. Shacham M, Brauner N, Cholakov GSt et al (2004) Property prediction by correlations based on similarity of molecular structures. AIChE J 50:2481–2492Google Scholar
  75. Skjold-Jørgensen S (1984) Gas Solubility Calculations. II. Application of a New Group-Contribution Equation of State. Fluid Phase Equilib 16:317–351Google Scholar
  76. Sola D, Ferri A, Banchero M et al (2008) QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method. Fluid Phase Equilib 263:33–42CrossRefGoogle Scholar
  77. Somayajulu GR (1989) Estimation procedures for critical constants. J Chem Eng Data 34:106–120CrossRefGoogle Scholar
  78. Sovova H, Stateva RP, Galushko A (2001) Essential oils from seeds: solubility of limonene in supercritical CO2 and how it is affected by fatty oil. J Supercrit Fluids 20:113–129CrossRefGoogle Scholar
  79. Sovová H, Stateva RP (2011) Supercritical fluid extraction from vegetable materials. Rev Chem Eng 27:79–156CrossRefGoogle Scholar
  80. Vafai S, Drake BD, Smith RL (1993) Solid molar volumes of interest to supercritical extraction at 298 K: atropine, berberine hydrochloride hydrate, brucine dihydrate, capsaicin, ergotamine tartrate dihydrate, naphthalene, penicillin V, piperine, quinine, strychnine, theobromine, theophylline, and yohimbine hydrochloride. J Chem Eng Data 38:125–127CrossRefGoogle Scholar
  81. Valderrama JO, Zavaleta J (2005) Sublimation pressure calculated from high-pressure gas–solid equilibrium data using genetic algorithms. Ind Eng Chem Res 44:4824–4833CrossRefGoogle Scholar
  82. Wakeham WA, Cholakov GSt, Stateva RP (2001) Consequences of property errors on the design of distillation columns. Fluid Phase Equilib 185:1–12Google Scholar
  83. Wakeham WA, Cholakov GSt, Stateva RP (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure. J Chem Eng Data 47:559–570Google Scholar
  84. Wang Q, Ma PS, Jia QZ et al (2008) Position group contribution method for the prediction of critical temperatures of organic compounds. J Chem Eng Data 53:1103–1109CrossRefGoogle Scholar
  85. Wang Q, Ma P, Wang C et al (2009) Position group contribution method for predicting the normal boiling point of organic compounds. Chin J Chem Eng 17:254–258CrossRefGoogle Scholar
  86. Wang Q, Jia Q, Ma P (2012) Prediction of the acentric factor of organic compounds with the positional distributive contribution method. J Chem Eng Data 57:169–189CrossRefGoogle Scholar
  87. Wertheim MS (1984a) Fluids with highly directional attractive forces. I. Statistical thermodynamics. J Stat Phys 35:19–34CrossRefGoogle Scholar
  88. Wertheim MS (1984b) Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat Phys 35:35–47CrossRefGoogle Scholar
  89. Wertheim MS (1986a) Fluids with highly directional attractive forces. III. Multiple attraction sites. J Stat Phys 42:459–476CrossRefGoogle Scholar
  90. Wertheim MS (1986b) Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J Stat Phys 42:477–492CrossRefGoogle Scholar
  91. Yan X, Dong Q, Hong X (2003) Reliability analysis of group contribution methods in predicting critical temperatures of organic compounds. J Chem Eng Data 48:374–380CrossRefGoogle Scholar
  92. Yang H, Zhong C (2005) Modeling of the solubility of aromatic compounds in supercritical carbon dioxide-cosolvent systems using SAFT equation of state. J Supercrit Fluids 33:99–106CrossRefGoogle Scholar
  93. Zbogar A, Lopes FVD, Kontogeorgis GM (2006) Approach suitable for screening estimation methods for critical properties of heavy compounds. Ind Eng Chem Res 45:476–480CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM)Universidad Autónoma de MadridMadridSpain
  2. 2.Institute of Chemical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations