Skip to main content

Thermophysical Properties of Pure Substances in the Context of Sustainable High Pressure Food Processes Modelling

  • Chapter
  • First Online:
Book cover High Pressure Fluid Technology for Green Food Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Knowledge of phase equilibria behaviour of food substances and green solvents under high pressure conditions is required to exploit to the full the advantages of high pressure fluid technology for green food processing. Data are currently available for quite a large number of systems at a wide range of conditions; still experimental measurement of high pressure phase equilibria is often difficult, expensive and time consuming. Thus, there is a demand for effective thermodynamic models to describe high pressure phase equilibria of solvents and natural substances. An essential element of these models is information about pure components thermophysical properties and, in the case when those are not available, capability to estimate them.

In this chapter the framework targeted on modelling the thermodynamics of processes utilizing high pressure fluids will be outlined and an update of the available methods to estimate thermophysical properties of pure natural substances is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams DS, Massaldi HA, Prausnitz JM (1974) Vapor pressures of liquids as a function of temperature. Two-parameter equation based on kinetic theory of fluids. Ind Eng Chem Fund 13:259–262

    Article  CAS  Google Scholar 

  • Abramowitz R, Yalkowsky SH (1990) Melting point, boiling point and symmetry. Pharm Res 7:942

    Article  CAS  Google Scholar 

  • Ambrose D (1978) Correlation and estimation of vapor–liquid critical properties. I. Critical temperatures of organic compounds. NPL Report Chem. 92. National Physical Laboratory, Teddington

    Google Scholar 

  • Ambrose D (1980) Correlation and estimation of vapor-liquid critical properties: II. Critical pressure and critical volume of organic compounds. NPL Rep. Chem. 107. National Physical Laboratory, Teddington

    Google Scholar 

  • Ambrose D, Young CL (1995) Vapor-liquid critical properties of elements and compounds 1. An introduction survey. J Chem Eng Data 40:345–357

    Article  CAS  Google Scholar 

  • Ambrose D, Tsonopoulos C (1995) Vapor-liquid critical properties of elements and compounds. 2. Normal alkanes. J Chem Eng Data 40:531–546

    Article  CAS  Google Scholar 

  • Apostolou DA, Kalospiros NS, Tassios DP (1995) Prediction of gas solubilities using the LCVM equation of state/excess Gibbs energy model. Ind Eng Chem Res 34:948–957

    Article  CAS  Google Scholar 

  • Ashwell M (2004) Conceptos sobre los alimentos funcionales. International Life Sciences Institute (ILSI). Spanish translation. ILSI, Bruselas

    Google Scholar 

  • Barley MH, Topping DO, McFiggans G (2013) Critical assessment of liquid density estimation methods for multifunctional organic compounds and their use in atmospheric science. J Phys Chem A 117:3428–3441

    Article  CAS  Google Scholar 

  • Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  • Brauner N, Cholakov GSt, Kahrs O, Stateva RP, Shacham M (2008) Linear QSPRs for predicting pure compound properties in homologous Series. AIChE J 54:978–990

    Google Scholar 

  • Brauner N, Shacham M (2013) Prediction of normal melting point of pure substances by a reference series method. AIChE J 59:3730–3740

    Article  CAS  Google Scholar 

  • Chen MM, Ma PS (2004) Solid-liquid equilibria of several systems containing acetic acid. J Chem Eng Data 49:756–759

    Article  CAS  Google Scholar 

  • Chickos JS, Hesse DG, Liebman JF (1990) Estimating entropies and enthalpies of fusion of hydrocarbons. J Org Chem 55:3833–3840

    Article  CAS  Google Scholar 

  • Chickos JS, Braton CM, Hesse DG et al (1991) Estimating entropies and enthalpies of fusion of organic compounds. J Org Chem 56:927–938

    Article  CAS  Google Scholar 

  • Cholakov GSt, Wakeham WA, Stateva RP (1999) Estimation of normal boiling points of hydrocarbons from descriptors of molecular structure. Fluid Phase Equilib 163:21–42

    Google Scholar 

  • Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021

    Article  CAS  Google Scholar 

  • Constantinou L, Prickett SE, Mavrovouniotis ML (1994) Estimation of properties of acyclic organic compounds using conjugation operators. Ind Eng Chem Res 33:395–402

    Article  CAS  Google Scholar 

  • Constantinou L, Gani R (1994) New group-contribution method for estimating properties of pure compounds. AIChE J 40:1697–1710

    Article  CAS  Google Scholar 

  • Coutsikos P, Magoulas K, Kontogeorgis GM (2003) Prediction of solid-gas equilibria with the Peng-Robinson equation of state. J Supercrit Fluids 25:197–212

    Article  CAS  Google Scholar 

  • Crampon C, Trassy L, Avaullee L et al (2004) Simplification and extension of a predictive group contribution method for estimating heavy organic pure compound vapor pressures I. Hydrocarbons. Fluid Phase Equilib 216:95–109

    Article  CAS  Google Scholar 

  • Dahl S, Fredenslund A, Rassmusen P (1991) The MHV2 model: a UNIFAC-based equation of state model for prediction of gas solubility and vapor-liquid equilibria at low and high pressures. Ind Eng Chem Res 30:1936–1945

    Article  CAS  Google Scholar 

  • Dalmazzone D, Salmon A, Guella S (2006) A second order group contribution method for the prediction of critical temperatures and enthalpies of vaporization of organic compounds. Fluid Phase Equilib 242:29–42

    Article  CAS  Google Scholar 

  • Dannenfelser RM, Yalkowsky SH (1996) Estimation of entropy of melting from molecular structure: a non-group contribution method. Ind Eng Chem Res 35:1483–1486

    Article  CAS  Google Scholar 

  • Dearden JC, Rahman MH (1988) QSAR approach to the prediction of melting points of substituted anilines. Math Comput Model 11:843

    Article  Google Scholar 

  • Dearden JC (2003) Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem 22:1696–1709

    Article  CAS  Google Scholar 

  • Del Valle JM, Aguilera JM (1988) An improved equation for prediction the solubility of vegetable oils in supercritical CO2. Ind Eng Chem Res 27:1551–1553

    Article  Google Scholar 

  • Edminster WC (1958) Applied hydrocarbon thermodynamics Part 4. Compressibility factors and equations of state. Pet Refin 37:173–179

    Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Eng Sci 14:147–154

    Article  CAS  Google Scholar 

  • Fornari T (2007) Revision and summary of the group contribution equation of state parameter table: application to edible oil constituents. Fluid Phase Equilib 262:187–209

    Article  CAS  Google Scholar 

  • Fornari T, Hernández EJ, Reglero G (2009) Solubility of supercritical gases in organic liquids. J Supercrit Fluids 51:115–122

    Article  CAS  Google Scholar 

  • Fornari T, Luna P, Stateva RP (2010) The vdW EoS hundred years later; yet younger than before. Application to the phase equilibria modeling of food-type systems for a green technology. J Supercrit Fluids 55:579–593

    Article  CAS  Google Scholar 

  • Gani R, Constantinou L (1996) Molecular structure based estimation of properties for process design. Fluid Phase Equilib 116:75–86

    Article  CAS  Google Scholar 

  • Garnier S, Neau E, Alessi P et al (1999) Modelling solubility of solids in supercritical fluids using fusion properties. Fluid Phase Equilib 158–160:491–500

    Article  Google Scholar 

  • Gharagheizi F, Alamdari RF, Angaji MT (2008) A new neural network − group contribution method for estimation of flash point temperature of pure components. Energy Fuels 22:1628–1635

    Article  CAS  Google Scholar 

  • Gharagheizi F, Mirkhani SA, Ilani-Kashkouli P et al (2013) Determination of the normal boiling point of chemical compounds using a quantitative structure–property relationship strategy: application to a very large dataset. Fluid Phase Equilib 354:250–258

    Article  CAS  Google Scholar 

  • Godavarthy SS, Robinson RL, Gasem KAM (2006) An improved structure property model for predicting melting point temperatures. Ind Eng Chem Res 45:5117–5126

    Article  CAS  Google Scholar 

  • Gold PI, Ogle GJ (1969) Estimating thermophysical properties of liquids. Part 4 s: boiling, freezing and triple-point temperatures. Chem Eng 76:119

    CAS  Google Scholar 

  • Goodman BT, Wilding W, Oscarson JL et al (2004) A note on the relationship between organic solid density and liquid density at the triple point. J Chem Eng Data 49:1512–1514

    Article  CAS  Google Scholar 

  • Güçlü-Üstündag O, Temelli F (2000) Correlating the solubility behavior of fatty acids, mono-, di-and triglycerides, and fatty acid esters in supercritical carbon dioxide. Ind Eng Chem Res 39:4756–4766

    Article  Google Scholar 

  • Güçlü-Üstündag O, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31:235–253

    Article  Google Scholar 

  • Hajipour S, Satyro MA (2011) Uncertainty analysis applied to thermodynamic models and process design 1. Pure components. Fluid Phase Equilib 307:78–94

    Article  CAS  Google Scholar 

  • Hernández EJ, Fornari T, Reglero G (2011) Correlating the solubility of supercritical gases in high molecular weight substances using a density-dependent equation. AIChE J 57:765–771

    Article  Google Scholar 

  • Hughes LD, Palmer DS, Nigsch F et al (2008) Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P. J Chem Inf Model 48:220–232

    Article  CAS  Google Scholar 

  • Jago D (2009) Functional foods, market trends. In: Functional foods symposium. Mintel, Amsterdam

    Google Scholar 

  • Jain A, Yang G, Yalkowsky SH (2004) Estimation of total entropy of melting of organic compounds. Ind Eng Chem Res 43:4376–4379

    Article  CAS  Google Scholar 

  • Jain A, Yalkowsky SH (2006) Estimation of melting points of organic compounds-II. J Pharm Sci 95:2562–2618

    Article  CAS  Google Scholar 

  • Jiao T, Zhuang X, Li C et al (2014) A benzene chain-based contribution method for prediction of physical properties of aromatic compounds. Fluid Phase Equilib 361:60–68

    Article  CAS  Google Scholar 

  • Joback KG (1984) A unified approach to physical property estimation using multivariate statistical techniques, S.M. thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Joback KG, Reid RC (1987) Estimation of pure component properties from group contributions. Chem Eng Commun 57:233

    Article  CAS  Google Scholar 

  • Kikic I, Lora M, Bertucco A (1997) A thermodynamic analysis of three phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS). Ind Eng Chem Res 36:5507–5515

    Article  CAS  Google Scholar 

  • Lazzus JA (2009) Hybrid method to predict melting points of organic compounds using group contribution plus neural network plus particle swarm algorithm. Ind Eng Chem Res 48:8760–8766

    Article  CAS  Google Scholar 

  • Lee BI, Kesler MG (1975) A generalised thermodynamic correlation based on three-parameter corresponding states. AIChE J 17:1412–1418

    Article  Google Scholar 

  • Lydersen AL (1955) Estimation of critical properties of organic compounds, College Engineering University Wisconsin, Engineering Experimental Station Report 3, Madison

    Google Scholar 

  • Lyman WJ (1985) Environmental exposure from chemicals, vol I. CRC, Boca Raton

    Google Scholar 

  • Marrero J, Gani R (2001) Group-contribution based estimation of pure component properties. Fluid Phase Equilib 183–184:183–208

    Article  Google Scholar 

  • Marrero-Morejon J, Pardillo-Fontdevila E (1999) Estimation of pure compound properties using group-interaction contributions. AIChE J 45:615–621

    Google Scholar 

  • Martinez-Correa HA, Gomes DCA, Kanehisa SL et al (2010) Measurements and thermodynamic modelling of the solubility of squalene in supercritical carbon dioxide. J Food Eng 96:43–50

    Article  CAS  Google Scholar 

  • McHugh MA, Watkins JJ, Doyle BT et al (1988) High-pressure naphthalene-xenon phase behavior. Ind Eng Chem Res 27:1025–1033

    Article  CAS  Google Scholar 

  • McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice, 2nd edn. Butterworth-Heine, Boston

    Google Scholar 

  • Nannoolal Y, Rarey J, Ramjugernath D (2007) Estimation of pure component properties: part 2. Estimation of critical property data by group contribution. Fluid Phase Equilib 252:1–27

    Article  CAS  Google Scholar 

  • Neau E, Garnier S, Alessi P et al (1996) Modeling solubility of biological compounds in supercritical fluids. In: von Rohr PR, Trepp C (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 265–270

    Google Scholar 

  • Neau E, Garnier S, Avaullee SL (1999) A consistent estimation of sublimation pressures using a cubic equation of state and fusion properties. Fluid Phase Equilib 164:173–186

    Article  CAS  Google Scholar 

  • Orbey H, Sandler SI (1998) Modeling vapor–liquid equilibria. Cubic equations of state and their mixing rules. Cambridge University, Cambridge

    Google Scholar 

  • Prausnitz JM, Lichtenthaler RN, Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Perry RH, Green DW (eds) (1999) Perry’s chemical engineers’ handbook. McGraw Hill, New York, p 361

    Google Scholar 

  • Pfohl O, Giese T, Dohrn R et al (1998) Comparison of 12 equations of state with respect to gas-extraction processes: reproduction of pure-component properties when enforcing the correct critical temperature and pressure. Ind Eng Chem Res 37:2957–2965

    Article  CAS  Google Scholar 

  • Pitzer KS (1955) The volumetric and thermodynamic properties of fluids. I: theoretical basis and virial coefficients. J Am Chem Soc 77:107–113

    Article  Google Scholar 

  • Poling JBE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Preiss UP, Beichel W, Erle AMT et al (2011) Is universal, simple melting point prediction possible? Chem Phys Chem 12:2959–2972

    CAS  Google Scholar 

  • Quintero FA, Felipe Muñoz F, Sam Mannan M (2012) Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system. Ind Eng Chem Res 51:16101–16115

    Article  CAS  Google Scholar 

  • Rackett HG (1970) Equation of state for saturated liquids. J Chem Eng Data 15:514–517

    Article  CAS  Google Scholar 

  • Reverchon E, Della Porta G, Taddeo R et al (1995) Solubility and micronization of griseofulvin in supercritical CHF 3. Ind Eng Chem Res 4:4087–4091

    Article  Google Scholar 

  • Shacham M, Brauner N, Cholakov GSt et al (2004) Property prediction by correlations based on similarity of molecular structures. AIChE J 50:2481–2492

    Google Scholar 

  • Skjold-Jørgensen S (1984) Gas Solubility Calculations. II. Application of a New Group-Contribution Equation of State. Fluid Phase Equilib 16:317–351

    Google Scholar 

  • Sola D, Ferri A, Banchero M et al (2008) QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method. Fluid Phase Equilib 263:33–42

    Article  CAS  Google Scholar 

  • Somayajulu GR (1989) Estimation procedures for critical constants. J Chem Eng Data 34:106–120

    Article  CAS  Google Scholar 

  • Sovova H, Stateva RP, Galushko A (2001) Essential oils from seeds: solubility of limonene in supercritical CO2 and how it is affected by fatty oil. J Supercrit Fluids 20:113–129

    Article  CAS  Google Scholar 

  • Sovová H, Stateva RP (2011) Supercritical fluid extraction from vegetable materials. Rev Chem Eng 27:79–156

    Article  Google Scholar 

  • Vafai S, Drake BD, Smith RL (1993) Solid molar volumes of interest to supercritical extraction at 298 K: atropine, berberine hydrochloride hydrate, brucine dihydrate, capsaicin, ergotamine tartrate dihydrate, naphthalene, penicillin V, piperine, quinine, strychnine, theobromine, theophylline, and yohimbine hydrochloride. J Chem Eng Data 38:125–127

    Article  CAS  Google Scholar 

  • Valderrama JO, Zavaleta J (2005) Sublimation pressure calculated from high-pressure gas–solid equilibrium data using genetic algorithms. Ind Eng Chem Res 44:4824–4833

    Article  CAS  Google Scholar 

  • Wakeham WA, Cholakov GSt, Stateva RP (2001) Consequences of property errors on the design of distillation columns. Fluid Phase Equilib 185:1–12

    Google Scholar 

  • Wakeham WA, Cholakov GSt, Stateva RP (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure. J Chem Eng Data 47:559–570

    Google Scholar 

  • Wang Q, Ma PS, Jia QZ et al (2008) Position group contribution method for the prediction of critical temperatures of organic compounds. J Chem Eng Data 53:1103–1109

    Article  CAS  Google Scholar 

  • Wang Q, Ma P, Wang C et al (2009) Position group contribution method for predicting the normal boiling point of organic compounds. Chin J Chem Eng 17:254–258

    Article  CAS  Google Scholar 

  • Wang Q, Jia Q, Ma P (2012) Prediction of the acentric factor of organic compounds with the positional distributive contribution method. J Chem Eng Data 57:169–189

    Article  Google Scholar 

  • Wertheim MS (1984a) Fluids with highly directional attractive forces. I. Statistical thermodynamics. J Stat Phys 35:19–34

    Article  Google Scholar 

  • Wertheim MS (1984b) Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat Phys 35:35–47

    Article  Google Scholar 

  • Wertheim MS (1986a) Fluids with highly directional attractive forces. III. Multiple attraction sites. J Stat Phys 42:459–476

    Article  Google Scholar 

  • Wertheim MS (1986b) Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J Stat Phys 42:477–492

    Article  Google Scholar 

  • Yan X, Dong Q, Hong X (2003) Reliability analysis of group contribution methods in predicting critical temperatures of organic compounds. J Chem Eng Data 48:374–380

    Article  CAS  Google Scholar 

  • Yang H, Zhong C (2005) Modeling of the solubility of aromatic compounds in supercritical carbon dioxide-cosolvent systems using SAFT equation of state. J Supercrit Fluids 33:99–106

    Article  CAS  Google Scholar 

  • Zbogar A, Lopes FVD, Kontogeorgis GM (2006) Approach suitable for screening estimation methods for critical properties of heavy compounds. Ind Eng Chem Res 45:476–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.F. acknowledges the financial support from Comunidad de Madrid (project ALIBIRD-S2009/AGR-1469). R.P. St. acknowledges the financial support from the Bulgarian Science Fund, Ministry of Education and Science (CONTRACT GRANT No: Б01/23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roumiana P. Stateva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fornari, T., Stateva, R.P. (2015). Thermophysical Properties of Pure Substances in the Context of Sustainable High Pressure Food Processes Modelling. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_4

Download citation

Publish with us

Policies and ethics