High Pressure Phase Equilibrium Engineering

  • N. Gañan
  • P. Hegel
  • S. Pereda
  • E. A. BrignoleEmail author
Part of the Food Engineering Series book series (FSES)


Green Chemistry principles call for the use of renewable resources, less waste and environmentally friendly solvents (EFS). Among EFS increasing attention is given to supercritical fluids (SCF). A field that has numerous SCF applications is that related to natural products processing, which is growing driven by the fact that biomass is renewable and nature can produce many complex molecules in a highly efficient way. In the present chapter an introduction to SCF technologies applied to food additives and bioactive compounds is presented. Thereafter, the thermodynamic modeling of phase equilibrium of natural products with supercritical fluids is summarized. The effects of molecular size and molecular interactions on the type of binary phase equilibria is discussed on the basis of the classification of van Konynenburg and Scott as well as the phase scenarios found in processing of natural products with supercritical fluids. A phase equilibrium engineering approach is used to design the phase conditions that meet the separation process goal. This approach is illustrated with two case studies: fractionation of bioactive compounds and extraction of jojoba oil with near critical mixed-solvents.


High pressure phase equilibria Thermodynamic modeling Phase diagrams Solubility in supercritical fluids Supercritical process design Process engineering Essential oils 


  1. Almeida AP, Rodriguez-Rojo S, Serra AT (2013) Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov Food Sci Emerg Technol 20:140–145CrossRefGoogle Scholar
  2. Bakkali F, Averbeck S, Averbeck D (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  3. Barth D, Chouchi D, Della Porta G (1994) Desorption of lemon peel oil by supercritical carbon dioxide: deterpenation and psoralens elimination. J Supercrit Fluids 7:177–183CrossRefGoogle Scholar
  4. Bottini SB, Fornari T, Brignole EA (1999) Phase equilibrium modeling of triglycerides with near critical solvents. Fluid Phase Equilibr 158–160:211–218CrossRefGoogle Scholar
  5. Brignole E, Pereda S (2013) Phase equilibrium engineering, Ch. 9. Elsevier, AmsterdamGoogle Scholar
  6. Brignole EA, Anderson PM, Fredenslund A (1987) Supercritical extraction of alcohols from water. Ind Eng Chem Res 26:254–261CrossRefGoogle Scholar
  7. Brunner G (1998) Industrial process development. Countercurrent multistage gas extraction (SFE) processes. J Supercrit Fluids 13:283–301CrossRefGoogle Scholar
  8. Brunner G (2009) Counter-current separations (Review). J Supercrit Fluids 47:574–582CrossRefGoogle Scholar
  9. Budich M, Heilig S, Wesse T (1999) Countercurrent deterpenation of citrus oils with supercritical CO2. J Supercrit Fluids 14:104–114Google Scholar
  10. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253CrossRefGoogle Scholar
  11. Catchpole OJ, Grey JB, Noermark KA (2000) Fractionation of fish oils using supercritical CO2 and CO2 + ethanol mixtures. J Supercrit Fluids 19:25–37CrossRefGoogle Scholar
  12. Catchpole OJ, Tallon SJ, Eltringham WE (2009) The extraction and fractionation of specialty lipids using near critical fluids (Review). J Supercrit Fluids 47:591–597CrossRefGoogle Scholar
  13. Chang CJ, Chiu KL, Chen YL (2000) Separation of catechins from green tea using carbon dioxide extraction. Food Chem 68:109–113CrossRefGoogle Scholar
  14. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021CrossRefGoogle Scholar
  15. Cismondi M, Michelsen ML (2007) Global phase equilibrium calculations: critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures. Fluid Phase Equilibr 259:228–234CrossRefGoogle Scholar
  16. Cocero MJ, Martín A, Mattea F (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555CrossRefGoogle Scholar
  17. Daghero J, Mattea M, Reverchon E (1999) Isolation of Tagetes minuta L. oil using supercritical CO2 extraction. Acta Horticulturae 503:21–25Google Scholar
  18. de la Fuente J, Fornari T, Brignole EA (1997) Phase equilibria of mixtures of triglycerides with low-molecular weight alkanes. Fluid Phase Equilibr 128:221–227CrossRefGoogle Scholar
  19. de Paz E, Martín A, Bartolomé A (2014) Development of water-soluble β-carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids 37:14–24CrossRefGoogle Scholar
  20. de Souza AC, Dias AMA, Sousa HC (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr Polym 102:830–837CrossRefGoogle Scholar
  21. Díaz S, Espinosa S, Brignole EA (2005) Citrus peel oil deterpenation with supercritical fluids. Optimal process and solvent cycle design. J Supercrit Fluids 35:49–61CrossRefGoogle Scholar
  22. Espinosa S, Bottini SB, Brignole EA (2000) Process analysis and phase equilibria for the removal of chemicals from fatty oils using near-critical solvents. Ind Eng Chem Res 39:3024–3033CrossRefGoogle Scholar
  23. Espinosa S, Formari T, Bottini SB (2002a) Phase equilibria of fatty oils and derivatives with near critical fluids with the GC-EOS model. J Supercrit Fluids 23:91–102CrossRefGoogle Scholar
  24. Espinosa S, Diaz S, Brignole EA (2002b) Thermodynamic modeling and process optimization of supercritical fluid fractionation of fish oil fatty acid ethyl esters. Ind Eng Chem Res 41:1516–1527CrossRefGoogle Scholar
  25. Espinosa S, Diaz M, Brignole EA (2008) Food additives obtained by supercritical extraction from natural sources. J Supercrit Fluids 45:213–219CrossRefGoogle Scholar
  26. Fang T, Goto M, Sasaki M (2008) Extraction and purification of natural tocopherols by supercritical CO2, Ch.4. In: Martínez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC, Boca RatónGoogle Scholar
  27. Fernández-Ronco MP, Gracia I, Zetzl C (2011) Equilibrium data for the separation of oleoresin capsicum using supercritical CO2: a theoretical design of a countercurrent gas extraction column. J Supercrit Fluids 57:1–8CrossRefGoogle Scholar
  28. Ferreira SRS, Nikolov ZL, Doraiswamy LK (1999) Supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. J Supercrit Fluids 14:235–245CrossRefGoogle Scholar
  29. Fornari T, Vázquez L, Torres CF (2008) Countercurrent supercritical fluid extraction of different lipid-type materials: experimental and thermodynamic modeling. J Supercrit Fluids 45:206–212CrossRefGoogle Scholar
  30. Fornari T, Luna P, Stateva RP (2010) The vdW EoS hundred years later, yet younger than before, application to the phase equilibria modeling of food-type systems for green technology. J Supercrit Fluids 55:579–593CrossRefGoogle Scholar
  31. Fornari T, Ruiz-Rodriguez A, Vicente G (2012) Kinetic study of the supercritical CO2 extraction of different plants from Lamiaceae family. J Supercrit Fluids 64:1–8CrossRefGoogle Scholar
  32. Gañán N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2—experiments and modeling. J Supercrit Fluids 58:58–67CrossRefGoogle Scholar
  33. Gañán N, Brignole EA (2013) Supercritical carbon dioxide fractionation of T. minuta and S. officinalis essential oils. Experiments and process analysis. J Supercrit Fluids 78:12–20CrossRefGoogle Scholar
  34. García-Risco MR, Vicente G, Reglero G (2011) Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. J Supercrit Fluids 55:949–954CrossRefGoogle Scholar
  35. Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 99:2507–2515CrossRefGoogle Scholar
  36. Glisic S, Ivanovic J, Ristic M (2010) Extraction of sage (Salvia officinalis L.) by supercritical CO2: kinetic data, chemical composition and selectivity of diterpenes. J Supercrit Fluids 52:62–70CrossRefGoogle Scholar
  37. Gracia I, Rodriguez JF, de Lucas A (2011) Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk. J Supercrit Fluids 59:72–77CrossRefGoogle Scholar
  38. Gros HP, Bottini SB, Brignole EA (1977) High pressure phase equilibrium modeling of mixtures containing associating compounds and gases. Fluid Phase Equilibr 139:75–87CrossRefGoogle Scholar
  39. Hegel P, Mabe G, Pereda S (2006) Phase equilibria of near critical CO2 + propane mixtures with fixed oils in the LV, LL and LLV region. J Supercrit Fluids 37:316–322CrossRefGoogle Scholar
  40. Hegel PE, Mabe GDB, Pereda S (2007) Phase equilibrium engineering of the extraction of oils from seeds using carbon dioxide + propane solvent mixtures. J Supercrit Fluids 42:318–324CrossRefGoogle Scholar
  41. Hegel P, Mabe G, Brignole EA (2013) Phase equilibrium engineering of jojoba oil extraction with mixed-CO2 + propane solvent. J Supercrit Fluids 79:114–122CrossRefGoogle Scholar
  42. Herrero M, Mendiola JM, Cifuentes A (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511CrossRefGoogle Scholar
  43. Ibáñez E, Oca A, de Murga G (1999) Supercritical fluid extraction and fractionation of different preprocessed rosemary plants. J Agric Food Chem 47:1400–1404CrossRefGoogle Scholar
  44. Joye IJ, McClements DJ (2013) Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food SciTech 34:109–123CrossRefGoogle Scholar
  45. Juliani HR, Zygadlo JA (2000) Bioactivity of essential oil components. Curr Top Phytochemistry 3:203–214Google Scholar
  46. Köse O, Akman U, Hortacsu Ö (2000) Semi-batch deterpenation of origanum oil by dense carbon dioxide. J Supercrit Fluids 18:49–63CrossRefGoogle Scholar
  47. Kotnik P, Skerget M, Knez Z (2007) Supercritical fluid extraction of chamomile flower heads: comparison with conventional extraction, kinetics and scale-up. J Supercrit Fluids 43:192–198CrossRefGoogle Scholar
  48. Ksibi H, Subra P, Garrabos Y (1995) Formation of fine powders of caffeine by RESS. Adv Powder Technol 6:25–33CrossRefGoogle Scholar
  49. Luks KD (1986) The occurrence and measurement of multiphase equilibria behavior. Fluid Phase Equilibr 29:209–224CrossRefGoogle Scholar
  50. Magnan C, Badens E, Commenges N (2000) Soy lecithin micronization by precipitation with a compressed fluid antisolvent—influence of process parameters. J Supercrit Fluids 19:69–77CrossRefGoogle Scholar
  51. Marqués JL, Della Porta G, Reverchon E (2013) Supercritical antisolvent extraction of antioxidants from grape seeds after vinification. J Supercrit Fluids 82:238–243CrossRefGoogle Scholar
  52. Navarrete A, Herrero M, Martín A (2011) Valorization of solid wastes from essential oil industry. J Food Eng 104:196–201CrossRefGoogle Scholar
  53. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378CrossRefGoogle Scholar
  54. Palla C, Hegel P, Pereda S (2014) Extraction of jojoba oil with liquid CO2 + propane mixtures. J Supercrit Fluids 91:37–45CrossRefGoogle Scholar
  55. Perakis C, Louli V, Magoulas K (2005) Supercritical fluid extraction of black pepper oil. J Food Eng 71:386–393CrossRefGoogle Scholar
  56. Pereda S, Bottini SB, Brignole EA (2005) Supercritical fluids and phase behavior in heterogeneous gas-liquid catalytic reactions. Appl Catal A-Gen 281:129–137CrossRefGoogle Scholar
  57. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives (Review). Food Bioprocess Technol 3:340–372CrossRefGoogle Scholar
  58. Peters CJ (1994) Multiphase equilibria in near-critical solvents. In: Kiran E, Levelt Sengers MH (eds) Supercritical fluids. Fundamentals for application. Kluwer, DordrechtGoogle Scholar
  59. Peters CJ, Gauter K (1999) Occurrence of holes in ternary fluid multiphase systems of near-critical carbon dioxide and certain solutes. Chem Rev 99:419–431CrossRefGoogle Scholar
  60. Peters CJ, Lichtenthaler RN, de Swaan Arons J (1986) Three phase equilibria in binary mixtures of ethane and higher n-alkanes. Fluid Phase Equilibr 29:495–504CrossRefGoogle Scholar
  61. Raissi S, Diaz S, Espinosa S (2008) Ethane as an alternative solvent for supercritical extraction of orange peel oils. J Supercrit Fluids 45:306–313CrossRefGoogle Scholar
  62. Reverchon E (1997a) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:1–37CrossRefGoogle Scholar
  63. Reverchon E (1997b) Supercritical desorption of limonene and linalool from silica gel: experiments and modelling. Chem Eng Sci 52:1019–1027CrossRefGoogle Scholar
  64. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter (Review). J Supercrit Fluids 38:146–166CrossRefGoogle Scholar
  65. Reverchon E, Della Porta G, Senatore F (1995a) Supercritical CO2 extraction and fractionation of lavender essential oil and waxes. J Agric Food Chem 43:1654–1658CrossRefGoogle Scholar
  66. Reverchon E, Taddeo R, Della Porta G (1995b) Extraction of sage oil by supercritical CO2: influence of some process parameters. J Supercrit Fluids 8:302–309CrossRefGoogle Scholar
  67. Reverchon E, Marciano A, Poletto M (1997) Fractionation of a peel oil key mixture by supercritical CO2 in a continuous tower. Ind Eng Chem Res 36:4940–4948CrossRefGoogle Scholar
  68. Riha V, Brunner G (2000) Separation of fish oil ethyl esters with supercritical carbon dioxide. J Supercrit Fluids 17:55–64CrossRefGoogle Scholar
  69. Rodrigues VM, Rosa PTV, Marques MOM (2003) Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: solubility, kinetics and composition data. J Agric Food Chem 51:1518–1523CrossRefGoogle Scholar
  70. Roy BC, Goto M, Kodama A (1996) Supercritical CO2 extraction of essential oils and cuticular waxes from peppermint leaves. J Chem Tech Biotecnol 67:21–26CrossRefGoogle Scholar
  71. Sabio E, Lozano M, Montero de Espinosa V (2003) Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res 42:6641–6646CrossRefGoogle Scholar
  72. Salgın U (2007) Extraction of jojoba seed oil using supercritical CO2 + ethanol mixture in green and high-tech separation process. J Supercrit Fluids 39:330–337CrossRefGoogle Scholar
  73. Salgın U, Alımlı AC, Uysal BZ (2004) Supercritical fluid extraction of jojoba oil. J Am Oil Chem Soc 81:293–296CrossRefGoogle Scholar
  74. Santos DT, Meireles MAA (2013) Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J Food Process Eng 36:36–49CrossRefGoogle Scholar
  75. Sato M, Goto M, Hirose T (1995) Fractional extraction with supercritical carbon dioxide for the removal of terpenes from citrus oils. Ind Eng Chem Res 34:3941–3946CrossRefGoogle Scholar
  76. Satvati HR, Lotfollahi MN (2011) Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process. Powder Technol 210:109–114CrossRefGoogle Scholar
  77. Scrivanti LR, Zunino MP, Zygadlo JA (2003) Tagetes minuta and Schinus areira essential oils as allelopathic agents. Biochem Sys Ecol 31(6):563–572CrossRefGoogle Scholar
  78. Simándi B, Oszagyán M, Lemberkovics E (1999) Supercritical carbon dioxide extraction and fractionation of oregano oleoresin. Food Res Int 31:723–728CrossRefGoogle Scholar
  79. Skjold Jorgensen S (1988) Group contribution equation of state (GC-EOS): a predictive method for phase equilibrium computations over wide ranges of temperature and pressure up to 30 MPa. Ind Eng Chem Res 27:110–118CrossRefGoogle Scholar
  80. Stahl E, Quirin KW, Gerard D (1983) Solubilities of soybean oil, jojoba oil and cuticular wax in dense carbon dioxide. Fette Siefen Anstrichmittel 85:458–463CrossRefGoogle Scholar
  81. Subra P, Jestin P (1999) Powders elaboration in supercritical media: comparison with conventional routes. Powder Technol 103:2–9CrossRefGoogle Scholar
  82. Tan SP, Ardidharma H, Radosz M (2008) Recent advances and applications of the statistical association fluid theory. Ind Eng Chem Res 47:8063–8082CrossRefGoogle Scholar
  83. Temelli F (2009) Perspectives on supercritical fluid processing of fats and oils (Review). J Supercrit Fluids 47:583–590CrossRefGoogle Scholar
  84. Tomova BS, Waterhouse JS, Doberski J (2005) The effect of fractionated Tagetes oil volatiles on aphid reproduction. Entomol Exp Appl 115:153–159CrossRefGoogle Scholar
  85. Topal U, Sasaki M, Goto M (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610CrossRefGoogle Scholar
  86. Torres A, Romero J, Macan A (2014) Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J Supercrit Fluids 85:41–48CrossRefGoogle Scholar
  87. Türk M (2009) Manufacture of submicron drug particles with enhanced dissolution behavior by rapid expansion processes. J Supercrit Fluids 47:537–545CrossRefGoogle Scholar
  88. Van Konynenburg PH, Scott RL (1980) Critical lines and phase equilibria in binary van der Waals mixtures. Phil Trans 298:495–540CrossRefGoogle Scholar
  89. Varona S, Martin A, Cocero MJ (2008) Supercritical carbon dioxide fractionation of Lavandin essential oil: experiments and modeling. J Supercrit Fluids 45:181–188CrossRefGoogle Scholar
  90. Vázquez L, Torres CF, Fornari T (2007) Recovery of squalene from vegetable oil sources using countercurrent supercritical carbon dioxide extraction. J Supercrit Fluids 40:59–66CrossRefGoogle Scholar
  91. Visentín A, Cismondi M, Maestri D (2012) Supercritical CO2 fractionation of rosemary ethanolic oleoresins as a method to improve carnosic acid recovery. Innov Food Sci Emerg Technol 12:142–145CrossRefGoogle Scholar
  92. Visentin A, Rodriguez-Rojo S, Navarrete A (2012) Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J Food Eng 109:9–15CrossRefGoogle Scholar
  93. Weidner E (2009) High pressure micronization for food applications (Review). J Supercrit Fluids 47:556–565CrossRefGoogle Scholar
  94. Wisniak J (1987) The chemistry and technology of jojoba oil. AOCS, ChampaignGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • N. Gañan
    • 1
  • P. Hegel
    • 1
  • S. Pereda
    • 2
  • E. A. Brignole
    • 1
    Email author
  1. 1.IDTQ, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.PLAPIQUI, Universidad Nacional del Sur-CONICETBahía BlancaArgentina

Personalised recommendations