Skip to main content

Development of Multiple Unit-Fluid Processes and Bio-refineries Using Critical Fluids

  • Chapter
  • First Online:
High Pressure Fluid Technology for Green Food Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Supercritical fluids and their liquefied analogues have been traditionally used in single unit operations, i.e. extraction, fractionation, using neat supercritical carbon dioxide (SCCO2) or with appropriate modifiers. Many of the supercritical fluid extraction processes have been devoted to extraction of food and natural products. Beginning in the mid-1980s, columnar and chromatographic techniques followed by reactions in supercritical fluids were developed to facilitate supercritical fluid derived extracts or products, thereby extending the application of a critical fluids processing platform beyond SFE. These newer developments were investigated in part due to the complexity of many natural product matrices and the desire to concentrate specific target components for food and other industrial uses.

In this chapter the advantages of coupling processing options using critical fluids are discussed and pertinent examples provided. Hence by combining different unit processes and sequencing them with the use of multiple fluids utilized at different temperatures and pressures, one can obtain multiple products and optimize the extraction or reaction process. Several specific options are illustrated for the cases of processing lipid-based materials such as concentrates of tocopherols, sterols, and phospholipids. Sequential isolation of both non-polar and polar ingredients is documented using a combination of fluids and/or unit processes. Finally the merits and difficulties in integrating critical fluid technology into the concept of a “bio-refinery” are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antal MJ Jr, Allen SG, Schulman D et al (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39(11):4040–4053

    Article  CAS  Google Scholar 

  • Ayala RS, de Castro MDL (2001) Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem 75(1):109–113

    Article  Google Scholar 

  • Baig MN, Alenezi R, Leeke GA et al (2008) Critical fluids as a process environment for adding value and functionality to sunflower oil; a model system for biorefining. In: Proceedings of the 11th Meeting on supercritical fluids, Barcelona, Spain, May 4–7, 2008

    Google Scholar 

  • Baig MN, Santos RCD, King JW et al (2013) Evaluation and modeling of continuous flow sub-critical water hydrolysis of biomass-derived components: lipids and carbohydrates. Chem Eng Res Des 91(12):2663–2670

    Article  CAS  Google Scholar 

  • Barneby HL, Brown AC (1948) Continuous fat splitting plants using the Colgate-Emery process. J Am Oil Chem Soc 25(3):95–99

    Article  Google Scholar 

  • Bogel-Lukasik E, Bogel-Lukasis R, Kriaa K et al (2008) Limonene hydrogenation in high-pressure CO2: effect of hydrogen pressure. J Supercrit Fluids 45(2):225–230

    Article  CAS  Google Scholar 

  • Brunner G (2000) Fractionation of fats with supercritical carbon dioxide. Eur J Lipid Sci Technol 102(3):240–245

    Article  CAS  Google Scholar 

  • Bunyakiat K, Makmee S, Ngamprasertsith S et al (2006) Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels 20:812–817

    Article  CAS  Google Scholar 

  • Cao X, Ito Y (2003) Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high speed counter-current chromatography. J Chromatogr 1021:117–124

    Article  CAS  Google Scholar 

  • Catchpole OJ, Durling NE, Grey JB (2006) Improvements in or related separation technology. New Zealand Patent NZ545146, World Patent WO2007091901

    Google Scholar 

  • Catchpole OJ, Tallon S, Dyer P et al (2012) Integrated supercritical fluid extraction and bioprocessing. Am J Biochem Biotechnol 8:263–287

    Article  CAS  Google Scholar 

  • Chuang M-H, Brunner G (2006) Concentration of minor componentsin crude palm oil. J Supercrit Fluids 37:151–156

    Article  CAS  Google Scholar 

  • Ciftci ON, Temelli F (2013) Continuous biocatalytic conversion of the oil of corn distiller’s dried grains with solubles to fatty acid methyl esters in supercritical carbon dioxide. Biomass Bioenergy 54:140–146

    Article  CAS  Google Scholar 

  • Clifford MN (2000) Anthocyanins- nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    Article  CAS  Google Scholar 

  • Clifford AA, Basile M, Jimenes-Carmona M et al (1999) Extraction of natural products with superheated water. In: Proceedings of the 6th Meeting on supercritical fluids, Nottingham, pp 485–490

    Google Scholar 

  • Eckert C, Liotta C, Ragauskas A et al (2007) Tunable solvents for fine chemicals from the biorefinery. Green Chem 9:545–548

    Article  CAS  Google Scholar 

  • Eggers R (1996) Supercritical fluid extraction of oilseeds/lipids in natural products. In: King JW, List GR (eds) Supercritical fluid technology in oil and lipid chemistry. AOCS, Champaign, pp 35–65

    Google Scholar 

  • Eller FJ, Taylor SL, Compton DL et al (2008) Counter-current liquid carbon dioxide purification of a model reaction mixture. J Supercrit Fluids 43:510–514

    Article  CAS  Google Scholar 

  • Fang T, Goto M, Sasaki M et al (2007) Extraction and purification of natural tocopherols by supercritical CO2. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC, Boca Raton, pp 103–141

    Chapter  Google Scholar 

  • Foidl N (1999) Device and process for the production of oils or other extractable substances. US Patent 5,939,571

    Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  Google Scholar 

  • Garcia-Marino M, Rivas-Gonzalo JC, Ibanez E et al (2006) Recovery of catechins and proanthocyanidins from winery by-products by using subcritical water extraction. Anal Chim Acta 563(1–2):44–50

    Article  CAS  Google Scholar 

  • Giezen, F Dijkink, B, Perrut M et al (2005) Continuous supercritical fluid extraction using a twin screw extruder. In: Proceedings of International symposium on supercritical fluids, Orlando, FL, May 1–4, 2005, Abstract #350

    Google Scholar 

  • Gomez AM, Lopez CP, de la Ossa EM (1996) Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: a comparison with conventional solvent extraction—short communication. Chem Eng J 61:227–231

    Google Scholar 

  • Goto M, Tanaka M, Quitain AT et al (2012). Recovery of phytochemicals by hybrid extraction process using supercritical CO2 and water. In: Proceedings of 10th International symposium on supercritical fluids (ISSF-2012), San Francisco, CA, May 13–16, 2012, pp 626–632

    Google Scholar 

  • Gupta RB, Shim J-J (2007) Solubility in supercritical carbon dioxide. CRC, Boca Raton

    Google Scholar 

  • Gupta MN, Sharma S, Shaw S (2004) Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuels 18:154–159

    Article  Google Scholar 

  • Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC, Boca Raton

    Book  Google Scholar 

  • Hawthorne SB, Yang Y, Miller DJ (1994) Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal Chem 66:2912–2920

    Article  CAS  Google Scholar 

  • Jackson MA, King JW (1996) Methanolysis of seed oils in flowing supercritical carbon dioxide. J Am Oil Chem Soc 73(3):353–356

    Article  CAS  Google Scholar 

  • Ju ZY, Howard LR (2005) Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J Food Sci 70(4):S270–S276

    Article  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (eds) (2006) Biorefineries—industrial processes and products, vols 1 & 2. Wiley-VCH, Weinheim

    Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  CAS  Google Scholar 

  • King JW (2000a) Sub- and supercritical fluid processing of agrimaterials: extraction, fractionation and reaction modes. In: Kiran E, Debenedetti PG, Peters CJ (eds) Supercritical fluids: fundamentals and applications. Kluwer, Dordrecht, pp 451–488

    Chapter  Google Scholar 

  • King JW (2000b) Advances in critical fluid technology for food processing. Food Sci Technol Int 14(4):186–191

    Google Scholar 

  • King JW (2002) Critical fluid options for isolating and processing agricultural and natural products. In: Proceedings of the 1st International symposium on supercritical fluid technology for energy and environmental applications super green, Suwon, South Korea, November 3–6, 2002, pp 61–66

    Google Scholar 

  • King JW (2003) Coupled processing options for agricultural materials using supercritical carbon dioxide. In: Gopalan AS, Wai CM, Jacobs HK (eds) Supercritical carbon dioxide: separations and processes. American Chemical Society, Washington, pp 104–130

    Chapter  Google Scholar 

  • King JW (2004a) Critical fluid technology for the processing of lipid-related natural products. Compt Rendus Chem 7:647–659

    Article  CAS  Google Scholar 

  • King JW (2004b) Development and potential of critical fluid technology in the nutraceutical industry. In: York P, Kompella UB, Shekunov BY (eds) Supercritical fluids technology for drug product development. Marcel Dekker, New York, pp 579–614

    Google Scholar 

  • King JW (2006) Pressurized water extraction: resources and techniques for optimizing analytical applications. In: Turner C (ed) Modern extraction techniques: food and agricultural samples. American Chemical Society, Washington, DC, pp 79–95

    Chapter  Google Scholar 

  • King JW (2012) Supercritical fluid-based extraction/processing: then and now. INFORM 23(2):124–127

    Google Scholar 

  • King JW (2014) Modern supercritical fluid technology for food applications. Annu Rev Food Sci Technol 5:215–238

    Article  CAS  Google Scholar 

  • King JW, Dunford NT (2002) Phytosterol-enriched triglyceride fractions from vegetable oil deodorizer distillates utilizing supercritical fluid fractionation technology. Sep Sci Tech 37(2):451–462

    Article  CAS  Google Scholar 

  • King JW, Grabiel RD (2007) Isolation of polyphenolic compounds from fruits or vegetables utilizing sub-critical water extraction. US Patent 7,208,181

    Google Scholar 

  • King JW, Srinivas K (2009) Multiple unit fluid processing using sub- and supercritical fluids. J Supercrit Fluids 47:598–610

    Article  CAS  Google Scholar 

  • King JW, Taylor SL, Snyder JM et al (1998) Total fatty acid analysis of vegetable oil soapstocks by supercritical fluid extraction/reaction (SFE/SFR). J Am Oil Chem Soc 75:1291–1295

    Article  CAS  Google Scholar 

  • King JW, Holliday RL, List GR et al (2001) Hydrogenation of vegetable oils using mixtures of supercritical carbon dioxide and hydrogen. J Am Oil Chem Soc 78(2):107–113

    Article  CAS  Google Scholar 

  • King JW, Srinivas K, del Valle JM et al (2006) Design and optimization for the use of sub-critical fluids in biomass transformation, bio-fuel production, and bio-refinery utilization—I. In: Proceedings of the 8th International symposium of supercritical fluids, Kyoto, Japan, November 5–8, 2006 Proceeding #OC-2-17, pp 1–8

    Google Scholar 

  • King JW, Howard LR, Srinivas K et al (2007) Pressurized liquid extraction and processing of natural products. In: Proceedings of the 5th International symposium on supercritical fluids, Seoul, South Korea, November 28–December 1, 2007, Proceedings # KL04, pp 1–8

    Google Scholar 

  • King JW, Zhang D, Schlagenhauf A et al (2008) Greening biomass/bioenergy conversion processes using analytical instrumentation. In: Proceedings of Pittcon conference and expo 2008, New Orleans, LA, March 2–7, 2008, Abstract #2150-4

    Google Scholar 

  • King JW, Srinivas K, Zhang D (2010) Advances in critical fluid processing. In: Proctor A (ed) Alternatives to conventional food processing. Royal Society of Chemistry, Cambridge, pp 93–144

    Chapter  Google Scholar 

  • King JW, Srinivas K, Guevara O et al (2012) Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. J Supercrit Fluids 66:221–231

    Article  CAS  Google Scholar 

  • Kusdiana D, Saka S (2004) Two-step preparation for catalyst-free biodiesel fuel production. Appl Biochem Biotechnol 115(1–3):781–791

    Article  Google Scholar 

  • Lascaray L (1949) Mechanism of fat splitting. Ind Eng Chem Res 41(4):786–790

    Article  CAS  Google Scholar 

  • Lee Y-W (2012) Supercritical fluid technology—key to the future. In: Proceedings of 10th International symposium on supercritical fluids (ISSF-2012), San Francisco, CA, May 10–13, 2012, Proceeding #407_004

    Google Scholar 

  • Licence P, Litchfield D, Dellar MP et al (2004) Supercriticality; a dramatic but safe demonstration of the critical point. Green Chem 6:352–354

    Article  CAS  Google Scholar 

  • Mantell C, Casas L, Rodriguez M et al (2013) Supercritical fluid extraction. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, West Sussex, pp 79–100

    Chapter  Google Scholar 

  • McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Moreschi SRM, Petenate AJ, Meireles MAA (2004) Hydrolysis of ginger bagasse starch in subcritical water and carbon dioxide. J Agric Food Chem 52(6):1753–1758

    Article  CAS  Google Scholar 

  • Moreschi SRM, Leal JC, Braga MEM et al (2006) Ginger and turmeric starches hydrolysis using subcritical water + CO2: effect of SFE pre-treatment. Braz J Chem Eng 23(2):235–242

    Article  CAS  Google Scholar 

  • Murga R, Ruiz R, Beltran S et al (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48:3408–3412

    Article  CAS  Google Scholar 

  • Nagesha GK, Manohar B, Udayasankar K (2003) Enrichment of tocopherols in modified soy deodorizer distillate using supercritical carbon dioxide extraction. Eur Food Res Technol 217(5):427–433

    Article  CAS  Google Scholar 

  • Panayiotou C (1997) Solubility parameter revisited: an equation-of-state approach for its estimation. Fluid Phase Equilibria 131:21–35

    Article  CAS  Google Scholar 

  • Pasquel A, Meireles MAA, Marques MOM et al (2000) Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol. Braz J Chem Eng 17(3):271–282

    Article  CAS  Google Scholar 

  • Pettinello G, Bertucco A, Pallado P et al (2000) Production of EPA enriched mixtures by supercritical fluid chromatography: from the laboratory scale to the pilot plant. J Supercrit Fluids 19:51–60

    Article  CAS  Google Scholar 

  • Quancheng Z, Guihua S, Hong J et al (2004) Concentration of tocopherols by supercritical carbon dioxide with cosolvents. Eur Food Res Technol 219:398–402

    Article  Google Scholar 

  • Rayner CM, Oakes R, Sakakura T et al (2005) Supercritical carbon dioxide. In: Mikami K (ed) Green reaction media in organic synthesis. Royal Society of Chemistry, Cambridge, pp 125–182

    Google Scholar 

  • Rayner CM, Clifford AA, Brough S et al (2006) Exploiting the potential of supercritical CO2 in synthetic organic chemistry. In: Proceedings of the 8th International symposium of supercritical fluids, Kyoto, Japan, November 5–8, 2006, Proceeding #OC-2-17

    Google Scholar 

  • Reverchon E (1997) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:1–37

    Article  CAS  Google Scholar 

  • Rizvi SSH, Mulvaney SJ, Sokhey AS (1995) The combined application of supercritical fluid and extrusion technology. Trends Food Sci Technol 6(7):232–240

    Article  CAS  Google Scholar 

  • Sabirzyanov AN, Il'in AP, Akhunov AR et al (2002) Solubility of water in supercritical carbon dioxide. High Temp 40(2):203–206

    Article  Google Scholar 

  • Sarmento LAV, Machado RAF, Petrus JCC et al (2008) Extraction of polyphenols from cocoa seeds and concentration through polymeric membranes. J Supercrit Fluids 45:64–69

    Article  CAS  Google Scholar 

  • Sarrade S, Perre CC, Vignet P (1999) Process and installation for the separation of heavy and light compounds by extraction using a supercritical fluid and nanofiltration. US Patent 5,961,835

    Google Scholar 

  • Savage PE, Gopalan S, Mizan TI et al (1995) Reactions at supercritical conditions—applications and fundamentals. AIChE J 47(7):1723–1778

    Article  Google Scholar 

  • Schacht C, Zetzil C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321

    Article  CAS  Google Scholar 

  • Snyder JM, King JW, Jackson MA (1997) Analytical supercritical fluid extraction with lipase catalysis: conversion of different lipids to methyl esters and effect of moisture. J Am Oil Chem Soc 74(5):585–588

    Article  CAS  Google Scholar 

  • Srinivas K, King JW (2010) Supercritical carbon dioxide and subcritical water: complimentary agents in the processing of functional foods. In: Smith J, Charter E (eds) Functional food product development. Wiley-Blackwell, New York, pp 39–78

    Chapter  Google Scholar 

  • Srinivas K., King J.W, Hansen CM (2008) Prediction and modeling of solubility phenomena in subcritical fluids using an extended solubility parameter approach. Abstracts ACS-AIChE National Meeting, New Orleans, April 6–10, 2008, Abstract #174h

    Google Scholar 

  • Stewart PB, Munjal P (1970) Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at −5° to 25°C and 10- to 45-atm. pressure. J Chem Eng Data 15(1):67–71

    Article  CAS  Google Scholar 

  • Taylor SL, King JW (2001) Fatty and resin acid analysis in tall oil products via SFE/SFR using enzymatic catalysis. J Chromatogr 39(7):269–272

    CAS  Google Scholar 

  • Temelli F (2009) Perspectives on supercritical fluid processing of fats and oils. J Supercrit Fluids 47:583–590

    Article  CAS  Google Scholar 

  • Temelli F, King JW, List GR (1996) Conversion of oils to monoglycerides by glycerolysis in supercritical carbon dioxide media. J Am Oil Chem Soc 73(6):699–706

    Article  CAS  Google Scholar 

  • Teng H, Yamasaki A (1998) Solubility of liquid CO2 in synthetic sea water at temperatures from 278 K to 293 K and pressures from 6.44 MPa to 29.49 MPa, and densities of the corresponding aqueous solutions. J Chem Eng Data 43(1):2–5

    Article  CAS  Google Scholar 

  • Toews K, Shroll R, Wai CM et al (1995) pH-defining equilibrium between water and supercritical CO2. Influence on SFE of organics and metal chelates. Anal Chem 67:4040–4043

    Article  CAS  Google Scholar 

  • Towsley RW, Turpin J, Sims M et al (1999) Porocritical fluid extraction using carbon dioxide for industrial recovery and recycle. In: Proceedings of the 6th Meeting on supercritical fluids, Nottingham

    Google Scholar 

  • Valcarcel M, Tena MT (1997) Applications of supercritical fluid extraction in food analysis. J Anal Chem 358:561–573

    Article  CAS  Google Scholar 

  • Van Walsum GP, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93:217–226

    Article  Google Scholar 

  • Wai CM, Lang Q (2003) Pressurized water extraction. US Patent 6,524,628

    Google Scholar 

  • Weibe R, Gaddy VL (1934) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. critical phenomena. J Am Chem Soc 62:815–817

    Article  Google Scholar 

  • Yang Y, Bowadt S, Hawthorne SB et al (1995) Subcritical water extraction of polychlorinated biphenyls from soil and sediment. Anal Chem 67:4571–4576

    Article  CAS  Google Scholar 

  • Yoshida H (2012) Development of pilot scale continuous sub-critical water plant to produce valuable materials and energy from organic wastes and their dynamic and kinetic analyses. In: Proceedings of 10th International symposium on supercritical fluids (ISSF-2012), San Francisco, CA, May 10–13, 2012, Proceeding #464_004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

King, J.W., Srinivas, K. (2015). Development of Multiple Unit-Fluid Processes and Bio-refineries Using Critical Fluids. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_13

Download citation

Publish with us

Policies and ethics