Supercritical Fluid Extraction of Carotenoids

  • Siti Machmudah
  • Wahyudiono
  • Motonobu GotoEmail author
Part of the Food Engineering Series book series (FSES)


Carotenoids represent one of the most widespread groups of naturally occurring pigments found in fruits, vegetables, and sea products, and serve as powerful antioxidant and precursors of vitamin A. Carotenoids exhibit yellow, orange, and red colors but when they are bound to proteins, they acquire green, purple, or blue colors. The Supercritical Fluid Extraction (SFE) is gaining increasing interest in the last decades because of its suitability for extraction and purification of compounds having low volatility or which are susceptible to thermal degradation. This chapter presents an updated overview on the applications of SFE in recovery of carotenoids from fruits, vegetables, and sea products emphasizing the effects of various process and role process parameters on the extraction yield of these compounds.


Supercritical fluid extraction Natural carotenoids Sea products Process parameters influence 


  1. Al-Wandawi H, Abdul-Rahman M, Al-Shaikhly K (1985) Tomato processing wastes as essential raw materials source. J Agric Food Chem 33(5):804–807CrossRefGoogle Scholar
  2. Ashraf-Khorassani M, Taylor LT (2004) Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids. J Agric Food Chem 52(9):2440–2444CrossRefGoogle Scholar
  3. Baysal T, Ersus S, Starmans DAJ (2000) Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J Agric Food Chem 48(11):5507–5511CrossRefGoogle Scholar
  4. Bjorklund E, Sparr-Eskilsson C (2005) Supercritical fluid extraction. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, Oxford, pp 597–608CrossRefGoogle Scholar
  5. Bohm V, Puspitasari-Nienaber NL, Ferruzzi MG et al (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50(1):221–226CrossRefGoogle Scholar
  6. Brunner G (1994) Gas extraction. Springer, New YorkCrossRefGoogle Scholar
  7. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1–2):21–33CrossRefGoogle Scholar
  8. Cadoni E, De Giorgi MR, Medda E et al (2000) Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes. Dyes Pigments 44(1):27–32CrossRefGoogle Scholar
  9. Cardenas-Toro FP, Forster-Carneiro T, Rostagno MA et al (2014) Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. J Supercrit Fluids 49(3):323–329, Scholar
  10. Cardoso LC, Serrano CM, Rodriguez MR et al (2012) Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am J Analyt Chem 3(12A):877–883CrossRefGoogle Scholar
  11. Carvalho RN, Moura LS, Rosa PTV et al (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids 35(3):197–204CrossRefGoogle Scholar
  12. Ciftci ON, Calderon J, Temelli F (2012) Supercritical carbon dioxide extraction of corn distiller’s dried grains with solubles: experiments and mathematical modeling. J Agric Food Chem 60(51):12482–12490CrossRefGoogle Scholar
  13. Ciurlia L, Bleve M, Rescio L (2009) Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicumesculentum L.) and hazelnuts (Corylusavellana L.): a new procedure in obtaining a source of natural lycopene. J Supercrit Fluids 49(3):338–344CrossRefGoogle Scholar
  14. Correa NCF, da Silva Macedo C, Jaqueline de FC Moraes J et al. (2012) Characteristics of the extract of Litopenaeus vannamei shrimp obtained from the cephalothorax using pressurized CO2. J Supercrit Fluids. 66:176–180Google Scholar
  15. Dapkevicius A, Venskutonis R, van Beek TA et al (1998) Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J Sci Food Agric 77(1):140–146CrossRefGoogle Scholar
  16. De la Fuente JC, Oyarzun B, Quezada N et al (2006) Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilib 247(1–2):90–95CrossRefGoogle Scholar
  17. Del Castillo MLR, Gomez-Prieto MS, Herraiz M et al (2003) Lipid composition in tomato skin supercritical fluid extracts with high lycopene content. J Am Oil Chem Soc 80:271–274CrossRefGoogle Scholar
  18. del Valle JM, Godoy C, Asencio M et al (2004) Recovery of antioxidants from boldo (Peumusboldus M.) by conventional and supercritical CO2 extraction. Food Res Int 37(7):695–702CrossRefGoogle Scholar
  19. Deming DM, Boileau TW-M, Heintz KH et al (2002) Carotenoids: linking chemistry, absorption, and metabolism to potential roles in human health and disease. In: Cadenas E, Packer L (eds) Handbook of antioxidants, 2nd edn. Marcel Dekker, New York, chap. 11Google Scholar
  20. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538CrossRefGoogle Scholar
  21. Diaz-Reinoso B, Moure A, Dominguez H et al (2007) Antioxidant extraction by supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC, Boca Raton, pp 275–303CrossRefGoogle Scholar
  22. Doker O, Salgin U, Sanal I et al (2004) Modeling of extraction of β-carotene from apricot bagasse using supercritical CO2 in packed bed extractor. J Supercrit Fluids 28(1):11–19CrossRefGoogle Scholar
  23. Egydio JA, Moraes AM, Rosa PTV (2010) Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. J Supercrit Fluids 54(2):159–164CrossRefGoogle Scholar
  24. Esquivel MM, Ribeiro MA, Bernardo-Gil MG (1999) Supercritical extraction of savory oil: study of antioxidant activity and extract characterization. J Supercrit Fluids 14(2):129–138CrossRefGoogle Scholar
  25. Filho GL, de Rosso VV, Meireles MAA et al (2008) Supercritical CO2 extraction of carotenoids from pitanga fruits (Eugenia uniflora L.). J Supercrit Fluids 46(1):33–39CrossRefGoogle Scholar
  26. Gomez-Prieto MS, Caja MM, Herraiz M et al (2003) Supercritical fluid extraction of all-trans-lycopene from tomato. J Agric Food Chem 51(1):3–7CrossRefGoogle Scholar
  27. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90(3):487–502CrossRefGoogle Scholar
  28. Guedes AC, Gião MS, Matias AA et al (2013) Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmusobliquus for use in food processing. J Food Eng 116(2):478–482CrossRefGoogle Scholar
  29. Guglü-Üstündag O, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31(3):235–253CrossRefGoogle Scholar
  30. Hadolin M, Hraš AR, Bauman D et al (2004) Isolation and concentration of natural antioxidants with high-pressure extraction. Innov Food Sci Emerg Tech 5(2):245–248CrossRefGoogle Scholar
  31. Kha TC, Phan-Tai H, Nguyen MH (2014) Effects of pre-treatments on the yield and carotenoid content of Gac oil using supercritical carbon dioxide extraction. J Food Eng 120:44–49CrossRefGoogle Scholar
  32. Kiokias S, Gordon MH (2004) Antioxidant properties of carotenoids in vitro and in vivo. Food Rev Int 20(2):99–121CrossRefGoogle Scholar
  33. Konar N, Haspolat I, Poyrazoglu ES et al (2012) A review on supercritical fluid extraction (SFE) of lycopene from tomato and tomato products. Karaelmas Sci Eng J 2(1):69–75CrossRefGoogle Scholar
  34. Lamin SK, John S, Gauri SM (2008) Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Sep Purif Tech 60(3):278–284CrossRefGoogle Scholar
  35. López-Sebastián S, Ramos E, Ibáñez E et al (1998) Dearomatization of antioxidant rosemary extracts by treatment with supercritical carbon dioxide. J Agric Food Chem 46(1):13–19CrossRefGoogle Scholar
  36. Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92(2):201–208CrossRefGoogle Scholar
  37. Lowe GM, Vlismas K, Young AJ (2003) Carotenoids as prooxidants? Mol Aspects Med 24(6):363–369CrossRefGoogle Scholar
  38. Machmudah S, Shotipruk A, Goto M et al (2006) Extraction of Astaxanthin from Haematococcuspluvialis using supercritical CO2 and ethanol as entrainer. Ind Eng Chem Res 45(10):3652–3657CrossRefGoogle Scholar
  39. Machmudah S, Kawahito Y, Sasaki M et al (2008) Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J Supercrit Fluids 44(3):308–314CrossRefGoogle Scholar
  40. Machmudah S, Zakaria WS et al (2012) Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J Food Eng 108(2):290–296CrossRefGoogle Scholar
  41. Mei S, Temelli F (2006) Supercritical CO2 extraction of carotenoids from carrots and evaluation of products. Scholar
  42. Mendiola JA, Herrero M, Cifuentes A et al (2007) Use of compressed fluids for sample preparation: food applications. J Chromatogr A 1152(1–2):234–246CrossRefGoogle Scholar
  43. Mezzomo N, Mileo BR, Friedrich MT et al (2010) Supercritical fluid extraction of peach (Prunuspersica) almond oil: process yield and extract composition. Bioresour Technol 101(14):5622–5632CrossRefGoogle Scholar
  44. Mezzomo N, Oliveira DA, Ferreira SRS (2013a) Antioxidant potential of extracts from processing residues from Brazilian food industries. Food Nutr Sci 4:211–218CrossRefGoogle Scholar
  45. Mezzomo N, Martinez J, Maraschin M et al (2013b) Pink shrimp (P. brasiliensis and P. paulensis) residue: supercritical fluid extraction of carotenoid fraction. J Supercrit Fluids 74:22–33CrossRefGoogle Scholar
  46. Mukhopadhyay M (2000) Natural extracts using supercritical carbon dioxide. CRC, Boca RatonCrossRefGoogle Scholar
  47. Mukhopadhyay M, Karamta HA (2008) Novel process for supercritical fluid extraction of nutraceuticals enriched with carotenoids. Ind Int Chem Eng 50(2):106–121Google Scholar
  48. Murga R, Ruiz R, Beltrán S et al (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48(8):3408–3412CrossRefGoogle Scholar
  49. Nardo TD, Shiroma-Kian C, Halim Y et al (2009) Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J Agric Food Chem 57(4):1105–1112CrossRefGoogle Scholar
  50. Nguyen U, Frackman G, Evans DA (1991) Process for extracting antioxidants from labiatae herbs. US Patent, 5,017,397, 21 May 1991Google Scholar
  51. Nobre BP, Palavra AF, Pessoa FLP et al (2009) Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chem 116(3):680–685CrossRefGoogle Scholar
  52. Nobre BP, Gouveia L, Matos PGS et al (2012) Supercritical extraction of lycopene from tomato industrial wastes with ethane. Molecules 17(7):8397–8407CrossRefGoogle Scholar
  53. Nobre BP, Villalobos F, Barragán BE et al (2013) A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136CrossRefGoogle Scholar
  54. Ollanketo M, Hartonen K, Riekkola M-L et al (2001) Supercritical carbon dioxide extraction of lycopene in tomato skins. Eur Food Res Technol 212:561–565CrossRefGoogle Scholar
  55. Opstaele FV, Goiris K, Rouck GD et al (2012) Production of novel varietal hop aromas by supercritical fluid extraction of hop pellets-Part 2: Preparation of single variety floral, citrus, and spicy hop oil essences by density programmed supercritical fluid extraction. J Supercrit Fluids 71:147–161CrossRefGoogle Scholar
  56. Quitain AT, Katoh S, Moriyoshi T (2004) Isolation of antimicrobials and antioxidants from moso-bamboo (PhyllostachysHeterocycla) by supercritical CO2 extraction and subsequent hydrothermal treatment of the residues. Ind Eng Chem Res 43(4):1056–1060CrossRefGoogle Scholar
  57. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38(2):146–166CrossRefGoogle Scholar
  58. Ribeiro MA, Bernardo-Gil MG, Esquivel MM (2001) Melissa officinalis L.: study of antioxidant activity in supercritical residues. J Supercrit Fluids 21(1):51–60CrossRefGoogle Scholar
  59. Rodriguez-Amaya DB (1989) Critical review of provitamin a determination in plant foods. J Micronutr Anal 5:191–225Google Scholar
  60. Rodriguez-Amaya DB (1990) Provitamin A determination—problems and possible solutions. Food Nutr Bull 12:246–250Google Scholar
  61. Rosa PTV, Meireles MAA (2005) Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. J Food Eng 67(1–2):235–240CrossRefGoogle Scholar
  62. Rozzi NL, Singh RK, Vierling RA et al (2002) Supercritical fluid extraction of lycopene from tomato processing byproducts. J Agric Food Chem 50(9):2638–2643CrossRefGoogle Scholar
  63. Ruen-ngam D, Shotipruk A, Pavasant P et al (2012) Selective extraction of lutein from alcohol treated chlorella vulgaris by supercritical CO2. Chem Eng Technol 35(2):255–260CrossRefGoogle Scholar
  64. Sabio E, Lozano M, de Espinosa VM et al (2003) Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res 42(25):6641–6646CrossRefGoogle Scholar
  65. Saldana MDA, Sun L, Guigard SE et al (2006) Comparison of the solubility of β-carotene in supercritical CO2 based on a binary and a multicomponent complex system. J Supercrit Fluids 37(3):342–349CrossRefGoogle Scholar
  66. Saldana MDA, Temelli F, Guigard SE et al (2010) Apparent solubility of lycopene and β-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. J Food Eng 99(1):1–8CrossRefGoogle Scholar
  67. Sanal IS, Guvenç A, Salgin U et al (2004) Recycling of apricot pomace by supercritical CO2 extraction. J Supercrit Fluids 32:221–230CrossRefGoogle Scholar
  68. Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in foods: technological, analytical, and nutritional implications. Trends Food Sci Technol 16:416–422CrossRefGoogle Scholar
  69. Schutz E (2007) Supercritical fluids and applications: a patent review. Chem Eng Technol 30(6):685–688CrossRefGoogle Scholar
  70. Sharoni Y, Agbaria R, Amir H et al (2003) Modulation of transcriptional activity by antioxidant carotenoids. Mol Aspects Med 24:371–384CrossRefGoogle Scholar
  71. Shi J, Khatri M, Xue SJ et al (2009a) Solubility of lycopene in supercritical CO2fluid as affected by temperature and pressure. Sep Purif Technol 66(2):322–328CrossRefGoogle Scholar
  72. Shi J, Yi C, Xue SJ et al (2009b) Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J Food Eng 93(4):431–436CrossRefGoogle Scholar
  73. Simándi B, Oszagyán M, Lemberkovics É et al (1998) Supercritical carbon dioxide extraction and fractionation of oregano oleoresin. Food Res Int 31(10):723–728CrossRefGoogle Scholar
  74. Sovova H, Stateva RP, Galushko AA (2001) Solubility of β-carotene in supercritical CO2 and the effect of entrainers. J Supercrit Fluids 21(3):195–203CrossRefGoogle Scholar
  75. Stahl W, Sies H (2002) Antioxidant effects of carotenoids: implication in photoprotection in humans. In: Cadenas E, Packer L (eds) Handbook of antioxidants, 2nd edn. Marcel Dekker, New York, chap. 11Google Scholar
  76. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24(6):345–351CrossRefGoogle Scholar
  77. Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J Supercrit Fluids 37(3):397–408CrossRefGoogle Scholar
  78. Topal U, Sasaki M, Goto M et al (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J Agric Food Chem 54(15):5604–5610CrossRefGoogle Scholar
  79. Vagi E, Simandi B, Vasa RKP et al (2007) Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J Supercrit Fluids 40:218–226CrossRefGoogle Scholar
  80. Vasapollo G, Longo L, Rescio L et al (2004) Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J Supercrit Fluids 29(1–2):87–96CrossRefGoogle Scholar
  81. Vaughn KLS, Clausen EC, King JW et al (2008) Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour Technol 99(16):7835–7841CrossRefGoogle Scholar
  82. Vega PJ, Balaban MO, Keefe SFO et al (1996) Supercritical carbon dioxide extraction efficiency for carotenes from carrots by RSM. J Food Sci 61(4):757–759CrossRefGoogle Scholar
  83. Yi C, Shi J, Xue SJ et al (2009) Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem 113(4):1088–1094CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSepuluh Nopember Institute of TechnologySurabayaIndonesia
  2. 2.Department of Chemical EngineeringNagoya UniversityNagoyaJapan
  3. 3.Department of Chemical EngineeringUniversity of SurabayaSurabayaIndonesia

Personalised recommendations