Supercritical Fluid Extraction of Compounds from Spices and Herbs

  • José A. Paixão CoelhoEmail author
  • António M. Figueiredo Palavra
Part of the Food Engineering Series book series (FSES)


Spices and some herbs have received increased attention as sources of effective antioxidant and antimicrobial activity compounds. This chapter discusses the supercritical fluid extraction (SFE) of oils from selected spice and herb materials. SFE process parameters such as pressure, temperature, solvent flow rate, size of grinding materials, and ratio of the co-solvent are presented with examples for the spice plant materials examined: black pepper, clove, coriander, Capsicum species, fennel and thyme. Moreover, the economic feasibility and market trends are discussed in terms of the principal imported/exported herbs, spices and the potentiality of extraction products.


Supercritical fluid extraction Spices and herbs Process parameters Essential oil Volatile oil Oleoresins Foodstuffs Antioxidant and antimicrobial activity Economic feasibility Marked trends 


  1. Aguiar AC, Sales LP, Coutinho JP et al (2013) Supercritical carbon dioxide extraction of Capsicum peppers: global yield and capsaicinoid content. J Supercrit Fluids 81:210–216CrossRefGoogle Scholar
  2. Anitescu G, Doneanu C, Radulescu V (1997) Isolation of coriander oil: comparison between steam distillation and supercritical CO2 extraction. Flavour Frag J 12:173–176CrossRefGoogle Scholar
  3. Babovic N, Djilas S, Jadranin M et al (2010) Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innov Food Sci Emer Technol 11:98–107CrossRefGoogle Scholar
  4. Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31(11):1651–1659CrossRefGoogle Scholar
  5. Bowadt S, Hawthorne SB (1995) Supercritical fluid extraction in environmental analysis. J Chromatogr A 703(1–2):549–571CrossRefGoogle Scholar
  6. Braga MEM, Meireles MAA (2007) Accelerated solvent extraction and fractioned extraction to obtain the Curcuma longa volatile oil and oleoresin. J Food Process Eng 30:501–521CrossRefGoogle Scholar
  7. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comp Rev Food Sci Food Saf 10:221–247CrossRefGoogle Scholar
  8. Bruno TJ, Castro CAN, Hamel JFP et al (1993) Supercritical fluid extraction of biological products. In: Kennedy JF, Cabral JMS (eds) Recovery process for biological materials. Wiley, New York, pp 303–354Google Scholar
  9. Capuzzo A, Maffei ME, Occhipinti A (2013) Supercritical fluid extraction of plant flavors and fragrances. Molecules 18:7194–7238CrossRefGoogle Scholar
  10. Carvalho RN, Moura LS, Rosa PTV et al (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids 35:197–204CrossRefGoogle Scholar
  11. Cavero S, Jaime L, Martín-Álvarez PJ et al (2005) In vitro antioxidant analysis of supercritical fluid extracts from rosemary (Rosmarinus officinalis L.). Eur Food Res Technol 221:478–486CrossRefGoogle Scholar
  12. Cavero S, García-Risco MR, Marín FR et al (2006) Supercritical fluid extraction of antioxidant compounds from oregano. Chemical and functional characterization via LC-MS and in vitro assays. J Supercrit Fluids 38:62–69CrossRefGoogle Scholar
  13. Celtković GS, Mandic AI, Canadanovic-Brunet JM et al (2007) Screening of phenolic compounds in winter savory (Satureja montana L.) extracts. J Liq Chromatogr Relat Technol 30:293–306CrossRefGoogle Scholar
  14. Chang CH, Chyau CC, Hsieh CL et al (2008) Relevance of phenolic diterpene constituents to antioxidant activity of supercritical CO2 extract from the leaves of rosemary. Nat Prod Res 22:76–90CrossRefGoogle Scholar
  15. Chatterjee D, Bhattacharjee P (2013) Supercritical carbon dioxide extraction of eugenol from clove buds. Food Bioprocess Technol 6:2587–2599CrossRefGoogle Scholar
  16. Chen Q, Yao S, Huang X et al (2009) Supercritical fluid extraction of Coriandrum sativum and subsequent separation of isocoumarins by high-speed counter-current chromatography. Food Chem 117:504–508CrossRefGoogle Scholar
  17. Chiu KL, Cheng YC, Chen JH et al (2002) Supercritical fluids extraction of Ginkgo ginkgolodes and flavonoids. J Supercrit Fluids 24:77–87CrossRefGoogle Scholar
  18. Chizzola R, Michitsch H, Franz C (2008) Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. J Agric Food Chem 56:6897–6904CrossRefGoogle Scholar
  19. Clifford AA, Basile A, Al-Saidi SHR (1999) A comparison of the extraction of clove buds with supercritical carbon dioxide and superheated water. Fresenius J Anal Chem 364:635–637CrossRefGoogle Scholar
  20. COE-Council of Europe (2007) European Directorate for the quality of medicines. European Pharmacopoeia 6th edition. StrasbourgGoogle Scholar
  21. Coelho JAP, Pereira AP, Mendes RL et al (2003) Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flavour Frag J 18:316–319CrossRefGoogle Scholar
  22. Coelho JA, Grosso C, Pereira AP et al (2007) Supercritical carbon dioxide extraction of volatiles from Satureja fruticosa Béguinot. Flavour Frag J 22:438–442CrossRefGoogle Scholar
  23. Coelho JP, Cristino AF, Matos PG et al (2012) Extraction of volatile oil from aromatic plants with supercritical carbon dioxide: experiments and modeling. Molecules 17(9):10550–10573CrossRefGoogle Scholar
  24. Damjanovic B, Lepojevic Z, Zivkovic V et al (2005) Extraction of fennel (Foeniculum vulgare Mill.) seeds with supercritical CO2: comparison with hydrodistillation. Food Chem 92:143–149CrossRefGoogle Scholar
  25. Daood HG, Illés V, Gnayfeed MH et al (2002) Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane. J Supercrit Fluids 23:143–152CrossRefGoogle Scholar
  26. Dapkevicius A, Venskutonis R, van Beek TA et al (1998) Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J Sci Food Agric 77:140–146CrossRefGoogle Scholar
  27. Dauksas E, Venskutonis PR, Povilaityte V et al (2001) Rapid screening of antioxidant activity of sage (Salvia officinalis L.) extracts obtained by supercritical carbon dioxide at different extraction conditions. Nahrung/Food 45(5):338–341CrossRefGoogle Scholar
  28. Del Valle JM, Rogalinski T, Zerzl C et al (2005) Extraction of boldo (Peumus boldus M.) leaves with supercritical CO2 and hot pressurized water. Food Res Int 38:203–213CrossRefGoogle Scholar
  29. Del Valle JM, Germain JC, Uquiche E et al (2006) Microstructural effects on internal mass transfer of lipids in prepressed and flaked vegetable substrates. J Supercrit Fluids 37:178–190CrossRefGoogle Scholar
  30. Della Porta G, Taddeo R, D’Urso E et al (1998) Isolation of clove bud and star anise essential oil by supercritical CO2 extraction. Lebensm Wiss u Technol 31:454–460CrossRefGoogle Scholar
  31. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316CrossRefGoogle Scholar
  32. Douglas M, Heyes J, Smallfield B (2005) Herbs, spices and essential oils: post-harvest operations in developing countries. FAO, RomeGoogle Scholar
  33. Duarte C, Moldão-Martins M, Gouveia AF et al (2004) Supercritical fluid extraction of red pepper (Capsicum frutescens L.). J Supercrit Fluids 30:155–161CrossRefGoogle Scholar
  34. Economou G, Panagopoulos G, Tarantilis P et al (2011) Variability in essential oil content and composition of Origanum hirtum L., Origanum onites L., Coridothymus capitatus (L.) and Satureja thymbra L. populations from the Greek island Ikaria. Ind Crop Prod 33:236–241CrossRefGoogle Scholar
  35. El-Ghorab AH, Mansour AF, El-Massry KF (2004) Effect of extraction methods on the chemical composition and antioxidant activity of Egyptian marjoram (Marjorana hortensis Moench). Flavour Frag J 19:54–61CrossRefGoogle Scholar
  36. ESA, European Spice Association (2013) ESA list of culinary herbs and spices. Accessed 21 Dec 2013Google Scholar
  37. Esmelindro AA, Girardi JS, Mossi A et al (2004) Influence of agronomic variables on the composition of mate tea leaves (Ilex paraguariensis) extracts obtained from CO2 extraction at 30 °C and 175 bar. J Agric Food Chem 52(7):1990–1995CrossRefGoogle Scholar
  38. Esquível MM, Ribeiro MA, Bernardo-Gil MG (1999) Supercritical extraction of savory oil: study of antioxidant activity and extract characterization. J Supercrit Fluids 14:129–138CrossRefGoogle Scholar
  39. Federal Register (2009) Environmental protection agency, 40 CFR Part 180 [EPA-QOPP- 2007-0081; FRL-8404-4]. Thymol; exemption from the requirement of a tolerance. Action: final rule. Vol. 74, No. 56/Rules and Regulations. Scholar
  40. Fernandez-Ronco MP, Gracia I, De Lucas A et al (2011) Measurement and modeling of the high-pressure phase equilibria of CO2-Oleoresin Capsicum. J Supercrit Fluids 57:112–119CrossRefGoogle Scholar
  41. Ferreira SRS, Nikolov ZL, Doraiswamy LK et al (1999) Supercritical fluid extraction of black pepper (Piper nigrun L.) essential oil. J Supercrit Fluids 14:235–245CrossRefGoogle Scholar
  42. Fornari T, Vicente G, Vázquez E et al (2012) Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J Chromatography A 1250:34–48CrossRefGoogle Scholar
  43. Gámiz-Gracia L, Duque de Castro MD (2000) Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta 51:1179–1185CrossRefGoogle Scholar
  44. García-Risco MR, Vicente G, Reglero G et al (2011) Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. J Supercrit Fluids 55:949–954CrossRefGoogle Scholar
  45. Gaspar F, Santos R, King MB (2001) Disruption of glandular trichomes with compressed CO2: alternative matrix pre-treatment for CO2 extraction of essential oils. J Supercrit Fluids 21:11–22CrossRefGoogle Scholar
  46. Genena AK, Hense H, Smania Junior A et al (2008) Rosemary (Rosmarinus officinalis). A study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciencia Tecnol Alim 28:463–469CrossRefGoogle Scholar
  47. Germain R, Del Valle JM, Fuente JC (2005) Natural convection retards supercritical CO2 extraction of essential oils and lipids from vegetable substrates. Ind Eng Chem Res 44:2879–2886CrossRefGoogle Scholar
  48. Gopalan B, Goto BM, Kodama A et al (2000) Supercritical carbon dioxide extraction of turmeric (Curcuma longa). J Agric Food Chem 48:2189–2192CrossRefGoogle Scholar
  49. Grosso ACFMT (2010) Supercritical fluid extraction of biological compounds from aromatic plants with interest for the pharmaceutical, food and agrochemical industries. Dissertation, IST-Universidade Técnica de LisboaGoogle Scholar
  50. Grosso C, Ferraro V, Figueiredo AC, Barroso JG et al (2008) Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds. Food Chem 111:197–203CrossRefGoogle Scholar
  51. Grosso C, Figueiredo AC, Burillo J et al (2009a) Enrichment of the thymoquinone content in volatile oil from Satureja montana using supercritical fluid extraction. J Sep Sci 32:328–334CrossRefGoogle Scholar
  52. Grosso C, Oliveira AC, Mainar AM et al (2009b) Antioxidant activities of the supercritical and conventional Satureja montana extracts. J Food Sci 74(9):C713–C717CrossRefGoogle Scholar
  53. Grosso C, Figueiredo AC, Burillo J et al (2010) Composition and antioxidant activity of Thymus vulgaris volatiles: comparison between supercritical fluid extraction and hydrodistillation. J Sep Sci 33:2211–2218CrossRefGoogle Scholar
  54. Hamburger M, Baumann D, Adler S (2004) Supercritical carbon dioxide extraction of selected medicinal plants—effects of high pressure and added ethanol on yield of extracted substances. Phytochem Anal 15:46–54CrossRefGoogle Scholar
  55. Hamdan S, Daood HG, Toth-Markus M et al (2008) Extraction of cardamom oil by supercritical carbon dioxide and sub-critical propane. J Supercrit Fluids 44:25–30CrossRefGoogle Scholar
  56. Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98:136–148CrossRefGoogle Scholar
  57. HongPeng Y, KeGang W, TongRui W et al (2009) Studies on supercritical CO2 extraction-molecular distillation of essential oil from clove (Eugenia caryophyllata Thunb.) bud. Chem Ind Forest Prod 29(5):74–78Google Scholar
  58. Ibáñez E, Oca A, Murga G et al (1999) Supercritical fluid extraction and fractionation of different preprocessed rosemary plants. J Agric Food Chem 47:1400–1404CrossRefGoogle Scholar
  59. Ibáñez E, Cifuentes A, Crego AL, Señoráns FJ et al (2000) Combined use of supercritical fluid extraction, micellar electrokinetic chromatography, and reverse phase high performance liquid chromatography for the analysis of antioxidants from rosemary (Rosmarinus officinalis L.). J Agric Food Chem 48(9):4960–4960CrossRefGoogle Scholar
  60. Illés V, Daood HG, Biacs PA et al (1999) Supercritical CO2 and subcritical propane extraction of spice seed pepper oil with special regard to carotenoid and tocopherol content. J Chromat Sci 37:345–352CrossRefGoogle Scholar
  61. Illés V, Daood HG, Perneczki S et al (2000) Extraction of coriander seed oil by CO2 and propane at super- and subcritical conditions. J Supercrit Fluids 17:177–186CrossRefGoogle Scholar
  62. Ivanovic J, Zizovic I, Ristic M et al (2011) The analysis of simultaneous clove/oregano and clove/thyme supercritical extraction. J Supercrit Fluids 55:983–991CrossRefGoogle Scholar
  63. Ivanovic J, Brankovic SD, Misic D et al (2013) Evaluation and improvement of antioxidant and antibacterial activities of supercritical extracts from clove buds. J Funct Foods 5:416–423CrossRefGoogle Scholar
  64. Jack M (2006) Title of subordinate document. In: Marketing manual and web directory for organic spices, culinary herbs and essential oils. International Trade Centre UNCTAD/WTO. Accessed 19 Dec 2013Google Scholar
  65. Kagliwal LD, Pol AS, Patil SC et al (2012) Antioxidant-rich extract from dehydrated seabuckthorn berries by supercritical carbon dioxide extraction. Food Bioprocess Technol 5:2768–2776CrossRefGoogle Scholar
  66. Karakaya S, El SN, Karagözlü N, Sahin S (2011) Antioxidant and antimicrobial activities of essential oils obtained from oregano (Origanum vulgare ssp. hirtum) by using different extraction methods. J Med Food 14(6):645–652CrossRefGoogle Scholar
  67. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytoch Anal 13:105–113CrossRefGoogle Scholar
  68. Kumoro AC, Hasan M, Singh H (2010) Extraction of Sarawak black pepper essential oil using supercritical carbon dioxide. Arab J Sci Eng 35(2B):7–16Google Scholar
  69. Laguerre M, Lecont J, Villeneuve P (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46:244–282CrossRefGoogle Scholar
  70. Leal PF, Braga MEM, Sato DN et al (2003) Functional properties of spice extracts obtained via supercritical fluid extraction. J Agric Food Chem 51:2520–2525CrossRefGoogle Scholar
  71. Lehotay SJ (1997) Supercritical fluid extraction of pesticides in foods. J Chromatogr A 785:289–312CrossRefGoogle Scholar
  72. Liang MT, Yang CH, Li ST et al (2008) Antibacterial and antioxidant properties of Ramulus cinnamomi using supercritical CO2 extraction. Eur Food Res Technol 227:1387–1396CrossRefGoogle Scholar
  73. Louli V, Folas G, Voutsas E et al (2004a) Extraction of parsley seed oil by supercritical CO2. J Supercrit Fluids 30:163–174CrossRefGoogle Scholar
  74. Louli V, Ragoussis N, Magoulas K (2004b) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92:201–208CrossRefGoogle Scholar
  75. Martín L, Marqués JL, González-Coloma A et al (2012) Supercritical methodologies applied to the production of biopesticides: a review. Phytochem Rev 11(4):413–431Google Scholar
  76. Maroto MCD, Hidalgo IJDM, Palomo ES et al (2005) Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and Thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation–extraction and supercritical fluid extraction. J Agric Food Chem 53:5385–5389CrossRefGoogle Scholar
  77. Matthews M, Jack M (2011) Spices and herbs for home and market. FAO, RomeGoogle Scholar
  78. Meghwal M, Goswami TK (2013) Piper nigrum and piperine: an update. Phytother Res 27:1121–1130CrossRefGoogle Scholar
  79. Meireles MAA (2003) Supercritical extraction from solid: process design (2001–2003). Curr Opin Solid State Mater Sci 7:321–330CrossRefGoogle Scholar
  80. Mhemdi H, Rodier E, Kechaou N et al (2011) A supercritical tunable process for the selective extraction of fats and essential oil from coriander seeds. J Food Eng 105:609–616CrossRefGoogle Scholar
  81. Moldão-Martins M, Palavra A, Costa MLB et al (2000) Supercritical CO2 extraction of Thymus zygis L. subsp. sylvestris aroma. J Supercrit Fluids 18:25–34CrossRefGoogle Scholar
  82. Moura LS, Carvalho RN Jr, Stefanini MB et al (2005) Supercritical fluid extraction from fennel (Foeniculum vulgare): global yield, composition and kinetic data. J Supercrit Fluids 35:212–219CrossRefGoogle Scholar
  83. Mukhopadhyay M (2001) Natural extracts using supercritical carbon dioxide. CRC Press, LondonGoogle Scholar
  84. Ollanketo M, Peltoketo A, Hartonen K et al (2002) Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. Eur Food Res Technol 215:158–163CrossRefGoogle Scholar
  85. Papamichail I, Louli V, Magoulas K (2000) Supercritical fluid extraction of celery seed oil. J Supercrit Fluids 18:213–226CrossRefGoogle Scholar
  86. Perakis C, Louli V, Magoulas K (2005) Supercritical fluid extraction of black pepper oil. J Food Eng 71:386–393CrossRefGoogle Scholar
  87. Peter KV (2006) Introduction. In: Peter KV (ed) Handbook of herbs and spices, vol 3. CRC Press, New York, p XI–XXVIIICrossRefGoogle Scholar
  88. Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24CrossRefGoogle Scholar
  89. Pourmortazavi SM, Sefidkon F, Hosseini SG (2003) Supercritical carbon dioxide extraction of essential oils from Perovskia atriplicifolia Benth. J Agric Food Chem 51:5414–5419CrossRefGoogle Scholar
  90. Pronyk C, Mazza G (2009) Design and scale-up of pressurized fluid extractors for food and bioproducts. J Food Eng 95:215–226CrossRefGoogle Scholar
  91. Pyo D, Oo HH (2007) Supercritical fluid extraction of drug-like materials from selected Myanmar natural plants and their antimicrobial activity. J Liq Chromatogr Rel Technol 30:377–392CrossRefGoogle Scholar
  92. Rao MV, Al-Marzouqi AH, Kaneez FS et al (2007) Comparative evaluation of SFE and solvent extraction methods on the yield and composition of black seeds (Nigella sativa). J Liq Chromatagr Rel Technol 30:2545–2555CrossRefGoogle Scholar
  93. Raveendran M, Ikushima Y, Scott L et al (2005) Polar attributes of supercritical carbon dioxide. Acc Chem Res 38:478–485CrossRefGoogle Scholar
  94. Reis-Vasco EMC, Coelho JAP, Palavra AMF (1999) Comparison of pennyroyal oils obtained by supercritical CO2 extraction and hydrodistillation. Flavour Frag J 14:156–160CrossRefGoogle Scholar
  95. Reverchon E (1992) Fractional separation of SCF extracts from marjoram leaves: mass transfer and optimization. J Supercrit Fluids 5(4):256–261CrossRefGoogle Scholar
  96. Reverchon E (1997) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:l–37Google Scholar
  97. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166CrossRefGoogle Scholar
  98. Reverchon E, Marrone C (1997) Supercritical extraction of clove bud essential oil: isolation and mathematical modelling. Chem Eng Sci 52(20):3421–3428CrossRefGoogle Scholar
  99. Reverchon E, Taddeo R, Della Porta G (1995) Extraction of sage oil by supercritical CO2: influence of some process parameters. J Supercrit Fluids 8(4):302–309CrossRefGoogle Scholar
  100. Reverchon E, Daghero J, Marrone C et al (1999) Supercritical fractional extraction of fennel seed oil and essential oil: experiments and mathematical modeling. Ind Eng Chem Res 38:3069–3075CrossRefGoogle Scholar
  101. Rodrigues VM, Rosa PTV, Marques MOM et al (2003) Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: solubility, kinetics and composition data. J Agric Food Chem 51:1518–1523CrossRefGoogle Scholar
  102. Rodríguez J, Ortuno C, Benedito J et al (2013) Optimization of the antioxidant capacity of thyme (Thymus vulgaris L.) extracts: management of the drying process. Ind Crops Prod 46:258–263CrossRefGoogle Scholar
  103. Rodríguez-Meizoso I, Marin FR, Herrero M et al (2006) Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biomed Anal 41:1560–1565CrossRefGoogle Scholar
  104. Rojas M, Brewer MS (2008) Effect of natural antioxidants on oxidative stability of frozen, vacuum-packaged beef and pork. J Food Qual 3(12):173–188CrossRefGoogle Scholar
  105. Roy BC, Goto M, Horise T (1996) Extraction of ginger oil with supercritical carbon dioxide: experiments and modelling. Ind Eng Chem Res 35:607–612CrossRefGoogle Scholar
  106. Santoyo S, Cavero S, Jaime L et al (2005) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J Food Protect 68:790–795Google Scholar
  107. Santoyo S, Lloría R, Jaime L et al (2006a) Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. Eur Food Res Technol 222:565–571CrossRefGoogle Scholar
  108. Santoyo S, Cavero S, Jaime L, Ibáñez E et al (2006b) Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters. J Food Protect 69:369–375Google Scholar
  109. Sasse A, Colindres P, Brewer MS (2009) Effect of natural and synthetic antioxidants on oxidative stability of cooked, frozen pork patties. J Food Sci 74(1):S30–S35CrossRefGoogle Scholar
  110. Shan B, Cai YZ, Sun M et al (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53(2):7749–7759CrossRefGoogle Scholar
  111. Silva FVM, Martins A, Salta J et al (2009) Phytochemical profile and anticholinesterase and antimicrobial activities of supercritical versus conventional extracts of Satureja montana. J Agric Food Chem 57:11557–11563CrossRefGoogle Scholar
  112. Simandi B, Deák A, Rónyai E (1999) Supercritical carbon dioxide extraction and fractionation of fennel oil. J Agric Food Chem 47:1635–1640CrossRefGoogle Scholar
  113. Simandi B, Hajdu V, Peredi K et al (2001) Antioxidant activity of pilot-plant alcoholic and supercritical carbon dioxide extracts of thyme. Eur J Lipid Sci Technol 103:355–358CrossRefGoogle Scholar
  114. Sovilj MN, Nikolovski BG, Spasojević MD (2011) Critical review of supercritical fluid extraction of selected spice plant material. Macedonian J Chem Eng 30(2):197–220Google Scholar
  115. Sovová H, Stateva RP (2011) Supercritical fluid extraction from vegetable materials. Rev Chem Eng 27:79–156CrossRefGoogle Scholar
  116. Sovová H, Jez J, Bártlová M et al (1995) Supercritical carbon dioxide extraction of black pepper. J Supercrit Fluids 8:295–301CrossRefGoogle Scholar
  117. Suhaj M (2006) Spice antioxidants isolation and their antiradical activity: a review. J Food Compos Anal 19:531–537CrossRefGoogle Scholar
  118. Svodoba KP, Deans SG (1992) A study of the variability of the rosemary and sage and their volatile oils on the British market: their antioxidantive properties. Flavour Frag J 7(2):81–87CrossRefGoogle Scholar
  119. Tena MT, Valcárcel M, Hidalgo PJ et al (1997) Supercritical fluid extraction of natural antioxidants from rosemary: comparison with liquid solvent sonication. Anal Chem 69:521–526CrossRefGoogle Scholar
  120. Tipsrisukond N, Fernando LN, Clarke AD (1998) Antioxidant effects of essential oil and oleoresin of black pepper from supercritical carbon dioxide extractions in ground pork. J Agric Food Chem 46:4329–4333CrossRefGoogle Scholar
  121. Topal U, Sasaki M, Goto M et al (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int J Food Sci Nutr 59(7–8):619–634CrossRefGoogle Scholar
  122. Uquiche E, del Valle JM, Ortiz J (2004) Supercritical carbon dioxide extraction of red pepper (Capsicum annuum L.) oleoresin. J Food Eng 65:55–66CrossRefGoogle Scholar
  123. Vagi E, Simandi B, Suhajda A et al (2005) Essential oil composition and antimicrobialactivity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res Int 38:51–57CrossRefGoogle Scholar
  124. Wenqiang G, Shufen L, Ruixiang Y et al (2007) Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and others three traditional extraction methods. Food Chem 101:1558–1564CrossRefGoogle Scholar
  125. Xing H, Yang Y, Su B et al (2003) Solubility of artemisinin in supercritical carbon dioxide. J Chem Eng Data 48:303–332CrossRefGoogle Scholar
  126. Yamini Y, Sefidkon F, Pourmortazavi SM (2002) Comparison of essential oil composition of Iranian fennel (Foeniculum vulgare) obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Flavour Frag J 17:345–348CrossRefGoogle Scholar
  127. Yepez B, Espinosa M, López S et al (2002) Producing antioxidant fractions from herbaceous matrices by supercritical fluid extraction. Fluid Phase Equilib 194–197:879–884CrossRefGoogle Scholar
  128. Zalepugin DY, Tilkunova NA, Yashin SY et al (2010) Application of supercritical fluid extraction to the development of new potential biocides on the basis of garlic (Allium sativum L.). Russ J Phys Chem B 4:1103–1111CrossRefGoogle Scholar
  129. Zarena AS, Sachindra NM, Sankar KU (2012) Optimisation of ethanol modified supercritical carbon dioxide on the extract yield and antioxidant activity from Garcinia mangostana L. Food Chem 130:203–208CrossRefGoogle Scholar
  130. Zekovic Z, Lepojevic Z, DJ V (2000) Supercritical extraction of thyme (Thymus vulgaris L.). Chromatographia 51(3–4):175–179CrossRefGoogle Scholar
  131. Zekovic Z, Lepojevic Z, Tolic A (2001) Modeling of the thyme supercritical carbon dioxide extraction system. I. The influence of carbon dioxide flow rate and grinding degree of thyme. Sep Sci Technol 36:3459–3472CrossRefGoogle Scholar
  132. Zhiyi L, Xuewu L, Shuhua C et al (2006) An experimental and simulating study of supercritical CO2 extraction for pepper oil. Chem Eng Process 45:264–267CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José A. Paixão Coelho
    • 1
    Email author
  • António M. Figueiredo Palavra
    • 2
  1. 1.Dep. Chem. Eng. and Chem. Eng. Biotechnology Research CenterISEL—Instituto Superior de Engenharia de LisboaLisbonPortugal
  2. 2.Dep. Chem. Eng. and Centro de Química EstruturalIST—Instituto Superior Técnico, Universidade de LisboaLisbonPortugal

Personalised recommendations