Advertisement

Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional

  • Evgeny Strekalovskiy
  • Daniel Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

We propose an algorithm for efficiently minimizing the piecewise smooth Mumford-Shah functional. The algorithm is based on an extension of a recent primal-dual algorithm from convex to non-convex optimization problems. The key idea is to rewrite the proximal operator in the primal-dual algorithm using Moreau’s identity. The resulting algorithm computes piecewise smooth approximations of color images at 15-20 frames per second at VGA resolution using GPU acceleration. Compared to convex relaxation approaches [18], it is orders of magnitude faster and does not require a discretization of color values. In contrast to the popular Ambrosio-Tortorelli approach [2], it naturally combines piecewise smooth and piecewise constant approximations, it does not require an epsilon-approximation and it is not based on an alternation scheme. The achieved energies are in practice at most 5% off the optimal value for one-dimensional problems. Numerous experiments demonstrate that the proposed algorithm is well-suited to perform discontinuity-preserving smoothing and real-time video cartooning.

Keywords

Mumford-Shah functional non-convex optimization real-time primal-dual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differential Equations 16(3), 299–333 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ–convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)Google Scholar
  4. 4.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. on Patt. Anal. and Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  5. 5.
    Brook, A., Kimmel, R., Sochen, N.A.: Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision 18(3), 247–268 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Im. Vis. 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  7. 7.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM Journal on Imaging Sciences 5(4), 1113–1158 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations I, II., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, vol. 37-38, pp. 37–38. Springer, Berlin (1998)CrossRefGoogle Scholar
  11. 11.
    Grady, L., Alvino, C.: The piecewise smooth Mumford-Shah functional on an arbitrary graph. IEEE Transactions on Image Processing 18(11) (2009)Google Scholar
  12. 12.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. IEEE Trans. on Patt. Anal. and Mach. Intell. 29(8), 1436–1453 (2007)CrossRefGoogle Scholar
  13. 13.
    Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sciences 4(4), 1049–1096 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Morel, J.M., Solimini, S.: Variational Methods in Image Segmentation. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  15. 15.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth Mumford-Shah functional. In: ICCV (2009)Google Scholar
  17. 17.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1996)Google Scholar
  18. 18.
    Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation for the vectorial Mumford-Shah functional. In: CVPR (June 2012)Google Scholar
  19. 19.
    Veksler, O.: Graph cut based optimization for mrfs with truncated convex priors. In: CVPR (2007)Google Scholar
  20. 20.
    Vese, L., Chan, T.: A multiphase level set framework for image processing using the Mumford–Shah functional. Int. J. of Computer Vision 50(3), 271–293 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l 0 gradient minimization. In: Proceedings of SIGGRAPH Asia, pp. 174:1–174:12. ACM (2011)Google Scholar
  22. 22.
    Zach, C., Hane, C., Pollefeys, M.: What is optimized in convex relaxations for multilabel problems: Connecting discrete and continuously inspired map inference. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(1), 157–170 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Evgeny Strekalovskiy
    • 1
  • Daniel Cremers
    • 1
  1. 1.TU MunichGermany

Personalised recommendations