Scalable 6-DOF Localization on Mobile Devices

  • Sven Middelberg
  • Torsten Sattler
  • Ole Untzelmann
  • Leif Kobbelt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)


Recent improvements in image-based localization have produced powerful methods that scale up to the massive 3D models emerging from modern Structure-from-Motion techniques. However, these approaches are too resource intensive to run in real-time, let alone to be implemented on mobile devices. In this paper, we propose to combine the scalability of such a global localization system running on a server with the speed and precision of a local pose tracker on a mobile device. Our approach is both scalable and drift-free by design and eliminates the need for loop closure. We propose two strategies to combine the information provided by local tracking and global localization. We evaluate our system on a large-scale dataset of the historic inner city of Aachen where it achieves interactive framerates at a localization error of less than 50cm while using less than 5MB of memory on the mobile device.


Mobile Device Orientation Error Bundle Adjustment Global Localization Reprojection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building Rome in a Day. In: ICCV (2009)Google Scholar
  2. 2.
    Agarwal, S., Mierle, K.: Ceres Solver: Tutorial & Reference. Google Inc.Google Scholar
  3. 3.
    Arandjelović, R., Zisserman, A.: Three Things Everyone Should Know to Improve Object Retrieval. In: CVPR (2012)Google Scholar
  4. 4.
    Arth, C., Klopschitz, M., Reitmayr, G., Schmalstieg, D.: Real-Time Self-Localization from Panoramic Images on Mobile Devices. In: ISMAR (2011)Google Scholar
  5. 5.
    Arth, C., Wagner, D., Klopschitz, M., Irschara, A., Schmalstieg, D.: Wide Area Localization on Mobile Phones. In: ISMAR (2009)Google Scholar
  6. 6.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded-Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Castle, R.O., Klein, G., Murray, D.W.: Video-Rate Localization in Multiple Maps for Wearable Augmented Reality. In: ISWC (2008)Google Scholar
  9. 9.
    Davison, A.J., Reid, I.D., Molton, N., Stasse, O.: MonoSLAM: Real-Time Single Camera SLAM. PAMI 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  10. 10.
    Dong, Z., Zhang, G., Jia, J., Bao, H.: Keyframe-Based Real-Time Camera Tracking. In: ICCV (2009)Google Scholar
  11. 11.
    Eade, E., Drummond, T.: Scalable Monocular SLAM. In: CVPR (2006)Google Scholar
  12. 12.
    Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A Minimal Case Solution to the Calibrated Relative Pose Problem for the Case of Two Known Orientation Angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Hedborg, J., Forssén, P.E., Felsberg, M., Ringaby, E.: Rolling Shutter Bundle Adjustment. In: CVPR (2012)Google Scholar
  15. 15.
    Horn, B.K.P.: Closed-Form Solution of Absolute Orientation Using Unit Quaternions. JOSA A 4(4), 629–642 (1987)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From Structure-from-Motion Point Clouds to Fast Location Recognition. In: CVPR (2009)Google Scholar
  17. 17.
    Klein, G., Murray, D.: Parallel Tracking and Mapping for Small AR Workspaces. In: ISMAR (2007)Google Scholar
  18. 18.
    Klein, G., Murray, D.: Parallel Tracking and Mapping on a Camera Phone. In: ISMAR (2009)Google Scholar
  19. 19.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable Keypoints. In: ICCV (2011)Google Scholar
  20. 20.
    Lhuillier, M.: Fusion of GPS and Structure-from-Motion Using Constrained Bundle Adjustments. In: CVPR (2011)Google Scholar
  21. 21.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide Pose Estimation Using 3D Point Clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Lim, H., Sinha, S.N., Cohen, M.F., Uyttendaele, M.: Real-Time Image-Based 6-DOF Localization in Large-Scale Environments. In: CVPR (2012)Google Scholar
  23. 23.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  24. 24.
    Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: A Micro Aerial Vehicle Design for Autonomous Flight Using Onboard Computer Vision. Autonomous Robots 33(1-2), 21–39 (2012)CrossRefGoogle Scholar
  25. 25.
    Newcombe, R.A., Lovegrove, S., Davison, A.J.: DTAM: Dense Tracking and Mapping in Real-Time. In: ICCV (2011)Google Scholar
  26. 26.
    Sattler, T., Leibe, B., Kobbelt, L.: Improving Image-Based Localization by Active Correspondence Search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image Retrieval for Image-Based Localization Revisited. In: BMVC (2012)Google Scholar
  28. 28.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Ventura, J., Höllerer, T.: Wide-Area Scene Mapping for Mobile Visual Tracking. In: ISMAR (2012)Google Scholar
  30. 30.
    Wendel, A., Irschara, A., Bischof, H.: Natural Landmark-based Monocular Localization for MAVs. In: ICRA (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sven Middelberg
    • 1
  • Torsten Sattler
    • 2
  • Ole Untzelmann
    • 1
  • Leif Kobbelt
    • 1
  1. 1.Computer Graphics GroupRWTH Aachen UniversityAachenGermany
  2. 2.Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations