Advertisement

Efficient Color Constancy with Local Surface Reflectance Statistics

  • Shaobing Gao
  • Wangwang Han
  • Kaifu Yang
  • Chaoyi Li
  • Yongjie Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

The aim of computational color constancy is to estimate the actual surface color in an acquired scene disregarding its illuminant. Many solutions try to first estimate the illuminant and then correct the image with the illuminant estimate. Based on the linear image formation model, we propose in this work a new strategy to estimate the illuminant. Inspired by the feedback modulation from horizontal cells to the cones in the retina, we first normalize each local patch with its local maximum to obtain the so-called locally normalized reflectance estimate (LNRE). Then, we experimentally found that the ratio of the global summation of true surface reflectance to the global summation of LNRE in a scene is approximately achromatic for both indoor and outdoor scenes. Based on this substantial observation, we estimate the illuminant by computing the ratio of the global summation of the intensities to the global summation of the locally normalized intensities of the color-biased image. The proposed model has only one free parameter and requires no explicit training with learning-based approach. Experimental results on four commonly used datasets show that our model can produce competitive or even better results compared to the state-of-the-art approaches with low computational cost.

Keywords

color constancy illuminant estimation reflectance retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of computational color constancy algorithms. ii. experiments with image data. IEEE Transactions on Image Processing 11(9), 985–996 (2002)CrossRefGoogle Scholar
  2. 2.
    Barnard, K., Martin, L., Funt, B., Coath, A.: A data set for color research. Color Research & Application 27(3), 147–151 (2002)CrossRefGoogle Scholar
  3. 3.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Automatic color constancy algorithm selection and combination. Pattern Recognition 43(3), 695–705 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bianco, S., Schettini, R.: Color constancy using faces. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 65–72. IEEE (2012)Google Scholar
  5. 5.
    Brainard, D.H., Freeman, W.T.: Bayesian color constancy. JOSA A 14(7), 1393–1411 (1997)CrossRefGoogle Scholar
  6. 6.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1), 1–26 (1980)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cardei, V.C., Funt, B., Barnard, K.: Estimating the scene illumination chromaticity by using a neural network. JOSA A 19(12), 2374–2386 (2002)CrossRefGoogle Scholar
  8. 8.
    Chakrabarti, A., Hirakawa, K., Zickler, T.: Color constancy with spatio-spectral statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(8), 1509–1519 (2012)CrossRefGoogle Scholar
  9. 9.
    Ciurea, F., Funt, B.: A large image database for color constancy research. In: Color and Imaging Conference, vol. 2003, pp. 160–164. Society for Imaging Science and Technology (2003)Google Scholar
  10. 10.
    Ebner, M.: Color constancy, vol, vol. 6. Wiley. com (2007)Google Scholar
  11. 11.
    Ebner, M.: Color constancy based on local space average color. Machine Vision and Applications 20(5), 283–301 (2009)CrossRefGoogle Scholar
  12. 12.
    Finlayson, G.: Corrected-moment illuminant estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1904–1911 (2013)Google Scholar
  13. 13.
    Finlayson, G.D.: Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10), 1034–1038 (1996)CrossRefGoogle Scholar
  14. 14.
    Finlayson, G.D., Hordley, S.D.: Color constancy at a pixel. JOSA A 18(2), 253–264 (2001)CrossRefGoogle Scholar
  15. 15.
    Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference, vol. 2004, pp. 37–41. Society for Imaging Science and Technology (2004)Google Scholar
  16. 16.
    Forsyth, D.A.: A novel algorithm for color constancy. International Journal of Computer Vision 5(1), 5–35 (1990)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Foster, D.H.: Color constancy. Vision Research 51(7), 674–700 (2011)CrossRefGoogle Scholar
  18. 18.
    Funt, B., Shi, L.: The rehabilitation of maxrgb. In: Color and Imaging Conference, vol. 2010, pp. 256–259. Society for Imaging Science and Technology (2010)Google Scholar
  19. 19.
    Funt, B., Xiong, W.: Estimating illumination chromaticity via support vector regression. In: Color and Imaging Conference, vol. 2004, pp. 47–52. Society for Imaging Science and Technology (2004)Google Scholar
  20. 20.
    Gao, S., Yang, K., Li, C., Li, Y.: A color constancy model with double-opponency mechanisms. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 929–936 (2013)Google Scholar
  21. 21.
    Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  22. 22.
    Gijsenij, A.: Color constancy: research website on illuminant estimation, http://colorconstancy.com/ (accessed from)
  23. 23.
    Gijsenij, A., Gevers, T.: Color constancy using natural image statistics and scene semantics. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 687–698 (2011)CrossRefGoogle Scholar
  24. 24.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision 86(2-3), 127–139 (2010)CrossRefGoogle Scholar
  25. 25.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Computational color constancy: Survey and experiments. IEEE Transactions on Image Processing 20(9), 2475–2489 (2011)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Improving color constancy by photometric edge weighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(5), 918–929 (2012)CrossRefGoogle Scholar
  27. 27.
    Hordley, S.D.: Scene illuminant estimation: past, present, and future. Color Research & Application 31(4), 303–314 (2006)CrossRefGoogle Scholar
  28. 28.
    Land, E.H., McCann, J.J., et al.: Lightness and retinex theory. Journal of the Optical society of America 61(1), 1–11 (1971)CrossRefGoogle Scholar
  29. 29.
    Lee, H.C.: Method for computing the scene-illuminant chromaticity from specular highlights. JOSA A 3(10), 1694–1699 (1986)CrossRefGoogle Scholar
  30. 30.
    Nascimento, S., Ferreira, F.P., Foster, D.H.: Statistics of spatial cone-excitation ratios in natural scenes. JOSA A 19(8), 1484–1490 (2002)CrossRefGoogle Scholar
  31. 31.
    Schiller, P.H.: Parallel information processing channels created in the retina. Proceedings of the National Academy of Sciences 107(40), 17087–17094 (2010)CrossRefGoogle Scholar
  32. 32.
    Shi, L., Funt, B.: Re-processed version of the gehler color constancy dataset of 568 images, http://www.cs.sfu.ca/~colour/data/ (accessed from)
  33. 33.
    Spitzer, H., Semo, S.: Color constancy: a biological model and its application for still and video images. Pattern Recognition 35(8), 1645–1659 (2002)CrossRefzbMATHGoogle Scholar
  34. 34.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. JOSA A 21(3), 321–334 (2004)CrossRefGoogle Scholar
  35. 35.
    Tsin, Y., Collins, R.T., Ramesh, V., Kanade, T.: Bayesian color constancy for outdoor object recognition. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I–1132 (2001)Google Scholar
  36. 36.
    Vaezi, J.H., Drew, M.: Exemplar-based colour constancy and multiple illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence (2013)Google Scholar
  37. 37.
    Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Van De Weijer, J., Schmid, C., Verbeek, J.: Using high-level visual information for color constancy. In: International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shaobing Gao
    • 1
  • Wangwang Han
    • 1
  • Kaifu Yang
    • 1
  • Chaoyi Li
    • 1
    • 2
  • Yongjie Li
    • 1
  1. 1.University of Electronic Science and Technology of ChinaChina
  2. 2.Shanghai Institutes for Biological SciencesChinese Academy of SciencesChina

Personalised recommendations