Advertisement

Face Detection without Bells and Whistles

  • Markus Mathias
  • Rodrigo Benenson
  • Marco Pedersoli
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)

Abstract

Face detection is a mature problem in computer vision. While diverse high performing face detectors have been proposed in the past, we present two surprising new top performance results. First, we show that a properly trained vanilla DPM reaches top performance, improving over commercial and research systems. Second, we show that a detector based on rigid templates - similar in structure to the Viola&Jones detector - can reach similar top performance on this task. Importantly, we discuss issues with existing evaluation benchmark and propose an improved procedure.

Keywords

Object Detection Average Precision Face Detection Weak Learner Evaluation Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Shehri, S.A.: A simple and novel method for skin detection and face locating and tracking. In: Masoodian, M., Jones, S., Rogers, B. (eds.) APCHI 2004. LNCS, vol. 3101, pp. 1–8. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: CVPR (2012)Google Scholar
  3. 3.
    Benenson, R., Mathias, M., Tuytelaars, T., Van Gool, L.: Seeking the strongest rigid detector. In: CVPR (2013)Google Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  5. 5.
    Divvala, S.K., Efros, A.A., Hebert, M.: How important are deformable parts in the deformable parts model? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 31–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dollár, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 645–659. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)Google Scholar
  8. 8.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge (2008)Google Scholar
  9. 9.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI (2010)Google Scholar
  10. 10.
    Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. PAMI (2004)Google Scholar
  11. 11.
    Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Jain, V., Learned-Miller, E.: Fddb: A benchmark for face detection in unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst (2010)Google Scholar
  13. 13.
    Jain, V., Learned-Miller, E.: Online domain adaptation of a pre-trained cascade of classifiers. In: CVPR (2011)Google Scholar
  14. 14.
    Kalal, Z., Matas, J., Mikolajczyk, K.: Weighted sampling for large-scale boosting. In: Everingham, M., Needham, C.J., Fraile, R. (eds.) BMVC. British Machine Vision Association (2008)Google Scholar
  15. 15.
    Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization. In: ICCV BeFIT Workshop (2011)Google Scholar
  16. 16.
    Li, J., Zhang, Y.: Learning surf cascade for fast and accurate object detection. In: CVPR (2013)Google Scholar
  17. 17.
    Ma, K., Ben-Arie, J.: Vector array based multi-view face detection with compound exemplars. In: CVPR (2012)Google Scholar
  18. 18.
    Maji, S., Berg, A., Malik, J.: Classi cation using intersection kernel support vector machines is efficient. In: CVPR (2008)Google Scholar
  19. 19.
    Mathias, M., Timofte, R., Benenson, R., Van Gool, L.: Traffic sign recognition - how far are we from the solution? In: ICJNN (2013)Google Scholar
  20. 20.
    Osadchy, M., LeCun, Y., Miller, M.: Synergistic face detection and pose estimation with energy-based models. JMLR (2007)Google Scholar
  21. 21.
    Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters (2003)Google Scholar
  22. 22.
    Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. PAMI (1998)Google Scholar
  23. 23.
    Ruiz-del-Solar, J., Verschae, R.: Skin detection using neighborhood information. In: FG, Seoul, Korea, May 17-19, pp. 463–468 (2004)Google Scholar
  24. 24.
    Schapire, R.E.: Explaining adaboost. In: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik (2013)Google Scholar
  25. 25.
    Schneiderman, H., Kanade, T.: Object detection using the statistics of parts. IJCV (2004)Google Scholar
  26. 26.
    Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: CVPR (2013)Google Scholar
  27. 27.
    Shen, X., Lin, Z., Brandt, J., Wuk, Y.: Detecting and aligning faces by image retrieval. In: CVPR (2013)Google Scholar
  28. 28.
  29. 29.
    Trzcinski, T., Christoudias, C.M., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. In: CVPR (2013)Google Scholar
  30. 30.
    Viola, P., Jones, M.: Robust real-time face detection. IJCV (2004)Google Scholar
  31. 31.
    Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: CVPR (2010)Google Scholar
  32. 32.
    Yan, J., Lei, Z., Wen, L., Li, S.Z.: The fastest deformable part model for object detection. In: CVPR (June 2014)Google Scholar
  33. 33.
    Yan, J., Zhang, X., Lei, Z., Li, S.: Face detection by structural models. Image and Vision Computing (2013)Google Scholar
  34. 34.
    Yan, J., Zhang, X., Lei, Z., Li, S.: Real-time high performance deformable model for face detection in the wild. In: ICB (2013)Google Scholar
  35. 35.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Tech. rep., Microsoft Research (2010)Google Scholar
  36. 36.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markus Mathias
    • 1
  • Rodrigo Benenson
    • 2
  • Marco Pedersoli
    • 1
  • Luc Van Gool
    • 1
    • 3
  1. 1.ESAT-PSI/VISICS, iMindsKU LeuvenBelgium
  2. 2.MPI InformaticsSaarbrückenGermany
  3. 3.D-ITET/CVLETH ZürichSwitzerland

Personalised recommendations