Advertisement

Person Re-identification by Video Ranking

  • Taiqing Wang
  • Shaogang Gong
  • Xiatian Zhu
  • Shengjin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)

Abstract

Current person re-identification (re-id) methods typically rely on single-frame imagery features, and ignore space-time information from image sequences. Single-frame (single-shot) visual appearance matching is inherently limited for person re-id in public spaces due to visual ambiguity arising from non-overlapping camera views where viewpoint and lighting changes can cause significant appearance variation. In this work, we present a novel model to automatically select the most discriminative video fragments from noisy image sequences of people where more reliable space-time features can be extracted, whilst simultaneously to learn a video ranking function for person re-id. Also, we introduce a new image sequence re-id dataset (iLIDS-VID) based on the i-LIDS MCT benchmark data. Using the iLIDS-VID and PRID 2011 sequence re-id datasets, we extensively conducted comparative evaluations to demonstrate the advantages of the proposed model over contemporary gait recognition, holistic image sequence matching and state-of-the-art single-shot/multi-shot based re-id methods.

Keywords

Image Sequence Action Recognition Dynamic Time Warping Gait Recognition Video Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. PRL 31, 2052–2060 (2010)CrossRefGoogle Scholar
  2. 2.
    Bedagkar-Gala, A., Shah, S.K.: Part-based spatio-temporal model for multi-person re-identification. PRL 33, 1908–1915 (2012)CrossRefGoogle Scholar
  3. 3.
    Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: ICCV, pp. 137–144 (2011)Google Scholar
  4. 4.
    Bergeron, C., Zaretzki, J., Breneman, C., Bennett, K.P.: Multiple instance ranking. In: ICML, pp. 48–55 (2008)Google Scholar
  5. 5.
    Bregonzio, M., Gong, S., Xiang, T.: Recognising action as clouds of space-time interest points. In: CVPR, pp. 1948–1955 (2009)Google Scholar
  6. 6.
    Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with svms. Information Retrieval 13, 201–215 (2010)CrossRefGoogle Scholar
  7. 7.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: BMVC (2011)Google Scholar
  8. 8.
    Cong, D.N.T., Achard, C., Khoudour, L., Douadi, L.: Video sequences association for people re-identification across multiple non-overlapping cameras. In: ICIAP, pp. 179–189 (2009)Google Scholar
  9. 9.
    Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 31–71 (1997)Google Scholar
  10. 10.
    Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)Google Scholar
  11. 11.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367 (2010)Google Scholar
  12. 12.
    Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR, pp. 1528–1535 (2006)Google Scholar
  13. 13.
    Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition using mined dense spatio-temporal features. In: ICCV, pp. 925–931 (2009)Google Scholar
  14. 14.
    Gong, S., Cristani, M., Loy, C.C., Hospedales, T.: The re-identification challenge. In: Person Re-Identification, pp. 1–20. Springer (2014)Google Scholar
  15. 15.
    Gong, S., Xiang, T.: Visual analysis of behaviour: From pixels to semantics. Springer (2011)Google Scholar
  16. 16.
    Hamdoun, O., Moutarde, F., Stanciulescu, B., Steux, B.: Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences. In: ICDSC, pp. 1–6 (2008)Google Scholar
  17. 17.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. TPAMI 28, 316–322 (2006)CrossRefGoogle Scholar
  18. 18.
    Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)Google Scholar
  19. 19.
    Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Hirzer, M., Roth, P.M., Köstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 780–793. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    John, V., Englebienne, G., Krose, B.: Solving person re-identification in non-overlapping camera using efficient gibbs sampling. In: BMVC (2013)Google Scholar
  22. 22.
    Kanaujia, A., Sminchisescu, C., Metaxas, D.: Semi-supervised hierarchical models for 3d human pose reconstruction. In: CVPR, pp. 1–8 (2007)Google Scholar
  23. 23.
    Karaman, S., Bagdanov, A.D.: Identity inference: Generalizing person re-identification scenarios. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 443–452. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Ke, Y., Sukthankar, R., Hebert, M.: Volumetric features for video event detection. IJCV 88, 339–362 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Klaser, A., Marszalek, M.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC (2008)Google Scholar
  26. 26.
    Laptev, I.: On space-time interest points. IJCV 64, 107–123 (2005)CrossRefGoogle Scholar
  27. 27.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR, pp. 1–8 (2008)Google Scholar
  28. 28.
    Li, W., Wang, X.: Locally aligned feature transforms across views. In: CVPR, pp. 3594–3601 (2013)Google Scholar
  29. 29.
    Lin, Z., Jiang, Z., Davis, L.S.: Recognizing actions by shape-motion prototype trees. In: ICCV, pp. 444–451 (2009)Google Scholar
  30. 30.
    Liu, C., Gong, S., Loy, C.C.: On-the-fly feature importance mining for person re-identification. PR 47, 1602–1615 (2014)Google Scholar
  31. 31.
    Martín-Félez, R., Xiang, T.: Gait recognition by ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 328–341. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Nakajima, C., Pontil, M., Heisele, B., Poggio, T.: Full-body person recognition system. PR 36, 1997–2006 (2003)zbMATHGoogle Scholar
  33. 33.
    Nixon, M.S., Tan, T., Chellappa, R.: Human identification based on gait, vol. 4. Springer (2010)Google Scholar
  34. 34.
    Poppe, R.: A survey on vision-based human action recognition. IVC 28, 976–990 (2010)CrossRefGoogle Scholar
  35. 35.
    Prosser, B., Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: BMVC (2010)Google Scholar
  36. 36.
    Rabiner, L.R., Juang, B.H.: Fundamentals of speech recognition, vol. 14. PTR Prentice Hall, Englewood Cliffs (1993)Google Scholar
  37. 37.
    Sapienza, M., Cuzzolin, F., Torr, P.: Learning discriminative space-time actions from weakly labelled videos. In: BMVC (2012)Google Scholar
  38. 38.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: Data sets, performance, and analysis. TPAMI 27, 162–177 (2005)CrossRefGoogle Scholar
  39. 39.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: ACM MM, pp. 357–360 (2007)Google Scholar
  40. 40.
    Simonnet, D., Lewandowski, M., Velastin, S.A., Orwell, J., Turkbeyler, E.: Re-identification of pedestrians in crowds using dynamic time warping. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 423–432. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Sobral, A.: BGSLibrary: An opencv c++ background subtraction library. In: WVC. Rio de Janeiro, Brazil (2013)Google Scholar
  42. 42.
    UK Home Office: i-LIDS Multiple Camera Tracking Scenario Definition (2008)Google Scholar
  43. 43.
    Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C., et al.: Evaluation of local spatio-temporal features for action recognition. In: BMVC (2009)Google Scholar
  44. 44.
    Waters, R., Morris, J.: Electrical activity of muscles of the trunk during walking. Journal of Anatomy 111, 191 (1972)Google Scholar
  45. 45.
    Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. CVIU 115, 224–241 (2011)Google Scholar
  46. 46.
    Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  47. 47.
    Xiao, J., Cheng, H., Sawhney, H.S., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  48. 48.
    Xu, Y., Lin, L., Zheng, W.S., Liu, X.: Human re-identification by matching compositional template with cluster sampling. In: ICCV (2013)Google Scholar
  49. 49.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: CVPR, pp. 3586–3593 (2013)Google Scholar
  50. 50.
    Zheng, W.S., Gong, S., Xiang, T.: Reidentification by relative distance comparison. TPAMI 35, 653–668 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Taiqing Wang
    • 1
  • Shaogang Gong
    • 2
  • Xiatian Zhu
    • 2
  • Shengjin Wang
    • 1
  1. 1.Dept. of Electronic EngineeringTsinghua UniversityChina
  2. 2.School of EECSQueen Mary University of LondonUK

Personalised recommendations