Advertisement

Parameterizing Object Detectors in the Continuous Pose Space

  • Kun He
  • Leonid Sigal
  • Stan Sclaroff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)

Abstract

Object detection and pose estimation are interdependent problems in computer vision. Many past works decouple these problems, either by discretizing the continuous pose and training pose-specific object detectors, or by building pose estimators on top of detector outputs. In this paper, we propose a structured kernel machine approach to treat object detection and pose estimation jointly in a mutually benificial way. In our formulation, a unified, continuously parameterized, discriminative appearance model is learned over the entire pose space. We propose a cascaded discrete-continuous algorithm for efficient inference, and give effective online constraint generation strategies for learning our model using structural SVMs. On three standard benchmarks, our method performs better than, or on par with, state-of-the-art methods in the combined task of object detection and pose estimation.

Keywords

object detection continuous pose estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: ICCV (2007)Google Scholar
  2. 2.
    Gu, C., Ren, X.: Discriminative mixture-of-templates for viewpoint classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 408–421. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Lopez-Sastre, R.J., Tuytelaars, T., Savarese, S.: Deformable part models revisited: A performance evaluation for object category pose estimation. In: ICCV 2011 Workshops (2011)Google Scholar
  4. 4.
    Torki, M., Elgammal, A.: Regression from local features for viewpoint and pose estimation. In: ICCV (2011)Google Scholar
  5. 5.
    Fenzi, M., Leal-Taixé, L., Rosenhahn, B., Ostermann, J.: Class generative models based on feature regression for pose estimation of object categories. In: CVPR (2013)Google Scholar
  6. 6.
    Hara, K., Chellappa, R.: Growing Regression Forests by Classification: Applications to Object Pose Estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 552–567. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Ozuysal, M., Lepetit, V.: P.Fua: Pose estimation for category specific multiview object localization. In: CVPR (2009)Google Scholar
  8. 8.
    Stark, M., Goesele, M., Schiele, B.: Back to the future: Learning shape models from 3D CAD data. In: BMVC (2010)Google Scholar
  9. 9.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE TPAMI 32(9) (2010)Google Scholar
  10. 10.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR (2012)Google Scholar
  11. 11.
    Schels, J., Liebelt, J., Lienhart, R.: Learning an object class representation on a continuous viewsphere. In: CVPR (2012)Google Scholar
  12. 12.
    Pepik, B., Gehler, P., Stark, M., Schiele, B.: 3D2PM - 3D deformable part models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 356–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Xiang, Y., Savarese, S.: Estimating the aspect layout of object categories. In: CVPR (2012)Google Scholar
  14. 14.
    Mei, L., Liu, J., Hero, A., Savarese, S.: Robust object pose estimation via statistical manifold modeling. In: ICCV (2011)Google Scholar
  15. 15.
    Zhang, H., El-Gaaly, T., Elgammal, A., Jiang, Z.: Joint object and pose recognition using homeomorphic manifold analysis. In: AAAI (2013)Google Scholar
  16. 16.
    Yuan, Q., Thangali, A., Ablavsky, V., Sclaroff, S.: Multiplicative kernels: Object detection, segmentation and pose estimation. In: CVPR (2008)Google Scholar
  17. 17.
    Ionescu, C., Bo, L., Sminchisescu, C.: Structural SVM for visual localization and continuous state estimation. In: ICCV (2009)Google Scholar
  18. 18.
    Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. The Annals of Statistics, 1171–1220 (2008)Google Scholar
  19. 19.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: A branch and bound framework for object localization. IEEE TPAMI 31(12) (2009)Google Scholar
  20. 20.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. JMLR 6(9) (2005)Google Scholar
  21. 21.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88(2) (2010)Google Scholar
  22. 22.
    Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Machine Learning 77(1) (2009)Google Scholar
  23. 23.
    Guzman-Rivera, A., Kohli, P., Batra, D.: Faster training of structural SVMs with diverse M-best cutting-planes. In: AISTATS (2013)Google Scholar
  24. 24.
    Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208. MIT Press, Cambridge (1999)Google Scholar
  25. 25.
    Bordes, A., Usunier, N., Bottou, L.: Sequence labelling SVMs trained in one pass. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 146–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial structures. In: ICPR 2004 Workshops (2004)Google Scholar
  27. 27.
    Glasner, D., Galun, M., Alpert, S., Basri, R., Shakhnarovich, G.: Viewpoint-aware object detection and pose estimation. In: ICCV (2011)Google Scholar
  28. 28.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)Google Scholar
  29. 29.
    Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV (2009)Google Scholar
  30. 30.
    Haj, M.A., Gonzalez, J., Davis, L.S.: On partial least squares in head pose estimation: How to simultaneously deal with misalignment. In: CVPR (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kun He
    • 1
  • Leonid Sigal
    • 2
  • Stan Sclaroff
    • 1
  1. 1.Computer Science DepartmentBoston UniversityUSA
  2. 2.Disney ResearchPittsburghUSA

Personalised recommendations