VCDB: A Large-Scale Database for Partial Copy Detection in Videos

  • Yu-Gang Jiang
  • Yudong Jiang
  • Jiajun Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)


The task of partial copy detection in videos aims at finding if one or more segments of a query video have (transformed) copies in a large dataset. Since collecting and annotating large datasets of real partial copies are extremely time-consuming, previous video copy detection research used either small-scale datasets or large datasets with simulated partial copies by imposing several pre-defined transformations (e.g., photometric or geometric changes). While the simulated datasets were useful for research, it is unknown how well the techniques developed on such data work on real copies, which are often too complex to be simulated. In this paper, we introduce a large-scale video copy database (VCDB) with over 100,000 Web videos, containing more than 9,000 copied segment pairs found through careful manual annotation. We further benchmark a baseline system on VCDB, which has demonstrated state-of-the-art results in recent copy detection research. Our evaluation suggests that existing techniques—which have shown near-perfect results on the simulated benchmarks—are far from satisfactory in detecting complex real copies. We believe that the release of VCDB will largely advance the research around this challenging problem.


Video copy detection benchmark dataset frame matching temporal alignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Douze, M., Jégou, H., Schmid, C., Pérez, P.: Compact video description for copy detection with precise temporal alignment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 522–535. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Wu, X., Hauptmann, A.G., Ngo, C.W.: Practical elimination of near-duplicates from web video search. In: ACM MM (2007)Google Scholar
  4. 4.
    Song, J., Yang, Y., Huang, Z., Shen, H.T., Hong, R.: Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: ACM MM (2011)Google Scholar
  5. 5.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Douze, M., Jegou, H., Schmid, C.: An image-based approach to video copy detection with spatio-temporal post-ltering. IEEE TMM 12(4), 257–266 (2010)Google Scholar
  7. 7.
    Indyk, P., Iyengar, G., Shivakumar, N.: Finding pirated video sequences on the internet. Technical Report, Stanford University (1999)Google Scholar
  8. 8.
    Joly, A., Frelicot, C., Buisson, O.: Robust content-based video copy identification in a large reference database. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 414–424. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Law-To, J., Joly, A., Boujemaa, N.: Muscle-VCD-2007: a live benchmark for video copy detection (2007),
  10. 10.
    U.S. National Institute of Standards and Technology: TREC video retrieval evaluation,
  11. 11.
    Law-To, J., Chen, L., Joly, A., Laptev, I., Buisson, O., Gouet-Brunet, V., Boujemaa, N., Stentiford, F.: Video copy detection: a comparative study. In: CIVR (2007)Google Scholar
  12. 12.
    Perronnin, F., Dance, C.R.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)Google Scholar
  13. 13.
    Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: CVPR (2007)Google Scholar
  14. 14.
    Tan, H.K., Ngo, C.W., Hong, R., Chua, T.S.: Scalable detection of partial near-duplicate videos by visual-temporal consistency. In: ACM MM (2009)Google Scholar
  15. 15.
    Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE TPAMI 33(1), 117–128 (2011)CrossRefGoogle Scholar
  16. 16.
    Revaud, J., Douze, M., Schmid, C., Jegou, H.: Event retrieval in large video collections with circulant temporal encoding. In: CVPR (2013)Google Scholar
  17. 17.
    Zhao, W.L., Ngo, C.W.: Flip-invariant sift for copy and object detection. IEEE TIP 22(3), 980–991 (2013)MathSciNetGoogle Scholar
  18. 18.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)Google Scholar
  19. 19.
    Perronnin, F., Liu, Y., Sanchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: CVPR (2010)Google Scholar
  20. 20.
    Arandjelovi, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)Google Scholar
  21. 21.
    Avrithis, Y., Tolias, G.: Hough pyramid matching: Speeded-up geometry re-ranking for large scale image retrieval. IJCV (2013)Google Scholar
  22. 22.
    Zhang, S., Yang, M., Wang, X., Lin, Y., Tian, Q.: Semantic-aware co-indexing for image retrieval. In: ICCV (2013)Google Scholar
  23. 23.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yu-Gang Jiang
    • 1
  • Yudong Jiang
    • 1
  • Jiajun Wang
    • 1
  1. 1.School of Computer Science, Shanghai Key Laboratory of Intelligent Information ProcessingFudan UniversityShanghaiChina

Personalised recommendations