A Non-Linear Filter for Gyroscope-Based Video Stabilization

  • Steven Bell
  • Alejandro Troccoli
  • Kari Pulli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)


We present a method for video stabilization and rolling-shutter correction for videos captured on mobile devices. The method uses the data from an on-board gyroscope to track the camera’s angular velocity, and can run in real time within the camera capture pipeline. We remove small motions and rolling-shutter distortions due to hand shake, creating the impression of a video shot on a tripod. For larger motions, we filter the camera’s angular velocity to produce a smooth output. To meet the latency constraints of a real-time camera capture pipeline, our filter operates on a small temporal window of three to five frames. Our algorithm performs better than the previous work that uses a gyroscope to stabilize a video stream, and at a similar level with respect to current feature-based methods.


video stabilization rolling-shutter gyroscopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karpenko, A., Jacobs, D., Baek, J., Levoy, M.: Digital video stabilization and rolling shutter correction using gyroscopes. Technical Report CTSR 2011-03, Department of Computer Science, Stanford University (2011)Google Scholar
  2. 2.
    Invensense Corporation: MPU-6050 Product Specification,
  3. 3.
    Grundmann, M., Kwatra, V., Castro, D., Essa, I.: Calibration-free rolling shutter removal. In: IEEE ICCP (2012)Google Scholar
  4. 4.
    Gleicher, M.L., Liu, F.: Re-cinematography: improving the camera dynamics of casual video. ACM Multimedia (2007)Google Scholar
  5. 5.
    Grundmann, M., Kwatra, V., Essa, I.: Auto-directed video stabilization with robust l1 optimal camera paths. In: IEEE CVPR (2011)Google Scholar
  6. 6.
    Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM TOG 32(4) (2013)Google Scholar
  7. 7.
    Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.Y.: Full-frame video stabilization with motion inpainting. IEEE PAMI 28(7) (2006)Google Scholar
  8. 8.
    Baker, S., Bennett, E., Kang, S.B., Szeliski, R.: Removing rolling shutter wobble. In: IEEE CVPR (2010)Google Scholar
  9. 9.
    Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3D video stabilization. ACM TOG 28(3) (2009)Google Scholar
  10. 10.
    Liu, F., Gleicher, M., Wang, J., Jin, H., Agarwala, A.: Subspace video stabilization. ACM TOG 30(1) (2011)Google Scholar
  11. 11.
    Hanning, G., Forslow, N., Forssén, P., Ringaby, E., Tornqvist, D., Callmer, J.: Stabilizing cell phone video using inertial measurement sensors. In: IEEE ICCV Workshops (2011)Google Scholar
  12. 12.
    Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM TOG 29(4) (2010)Google Scholar
  13. 13.
    Forssen, P., Ringaby, E.: Rectifying rolling shutter video from hand-held devices. In: IEEE CVPR (2010)Google Scholar
  14. 14.
    Oth, L., Furgale, P., Kneip, L., Siegwart, R.: Rolling shutter camera calibration. In: IEEE CVPR (2013)Google Scholar
  15. 15.
    Various: OpenCV library,
  16. 16.
    Google: Android operating system developers’ API guide,
  17. 17.
    Shoemake, K.: Animating rotation with quaternion curves. ACM TOG 19(3) (1985)Google Scholar
  18. 18.
    Li, M., Mourikis, A.: 3-D motion estimation and online temporal calibration for camera-IMU systems. In: IEEE ICRA (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Steven Bell
    • 1
  • Alejandro Troccoli
    • 2
  • Kari Pulli
    • 2
  1. 1.Stanford UniversityStanfordUSA
  2. 2.NVIDIA ResearchSanta ClaraUSA

Personalised recommendations