Advertisement

Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysis

  • Ali Mosleh
  • J. M. Pierre Langlois
  • Paul Green
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)

Abstract

We present a new method to detect and remove ringing artifacts produced by the deconvolution process in image deblurring techniques. The method takes into account non-invertible frequency components of the blur kernel used in the deconvolution. Efficient Gabor wavelets are produced for each non-invertible frequency and applied on the deblurred image to generate a set of filter responses that reveal existing ringing artifacts. The set of Gabor filters is then employed in a regularization scheme to remove the corresponding artifacts from the deblurred image. The regularization scheme minimizes the responses of the reconstructed image to these Gabor filters through an alternating algorithm in order to suppress the artifacts. As a result of these steps we are able to significantly enhance the quality of the deblurred images produced by deconvolution algorithms. Our numerical evaluations using a ringing artifact metric indicate the effectiveness of the proposed deringing method.

Keywords

deconvolution image deblurring point spread function ringing artifacts zero-magnitude frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. Society for Industrial and Applied Mathematics (2006)Google Scholar
  2. 2.
    Gonzlez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, NJ (2002)Google Scholar
  3. 3.
    Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)CrossRefGoogle Scholar
  4. 4.
    Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal 79(6), 745–754 (1974)CrossRefGoogle Scholar
  5. 5.
    Mesarovic, V.Z., Galatsanos, N.P., Katsaggelos, A.K.: Regularized constrained total least squares image restoration. IEEE Transactions on Image Processing 4(8), 1096–1108 (1995)CrossRefGoogle Scholar
  6. 6.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics (SIGGRAPGH) 27(3), 73:1–73:10 (2008)Google Scholar
  7. 7.
    Babacan, S.D., Molina, R., Do, M.N., Katsaggelos, A.K.: Bayesian blind deconvolution with general sparse image priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 341–355. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)Google Scholar
  9. 9.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences 1(3), 248–272 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)Google Scholar
  12. 12.
    Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Transactions on Image Processing 20(11), 3097–3111 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing 20(6), 1964–1977 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gregson, J., Heide, F., Hullin, M.B., Rouf, M., Heidrich, W.: Stochastic Deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1043–1050 (June 2013)Google Scholar
  15. 15.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs 26(3), 1–10 (2007)Google Scholar
  16. 16.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph 25(3), 787–794 (2006)Google Scholar
  17. 17.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1964–1971 (2009)Google Scholar
  18. 18.
    Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, pp. 841–848 (2006)Google Scholar
  19. 19.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Progressive inter-scale and intra-scale non-blind image deconvolution 27(3), 74:1–74:10 (2008)Google Scholar
  21. 21.
    Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: IEEE International Conference on Computer Vision (ICCV), pp. 495–502 (2011)Google Scholar
  22. 22.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Transactions on Graphics (SIGGRAPH) 25, 795–804 (2006)CrossRefGoogle Scholar
  23. 23.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics (SIGGRAPH) 26(3), 70 (2007)CrossRefGoogle Scholar
  24. 24.
    Heide, F., Rouf, M., Hullin, M.B., Labitzke, B., Heidrich, W., Kolb, A.: High-quality computational imaging through simple lenses. ACM Transactions on Graphics (SIGGRAPH) (2013)Google Scholar
  25. 25.
    Liu, H., Klomp, N., Heynderickx, I.: A perceptually relevant approach to ringing region detection. IEEE Transactions on Image Peocessing 19(6), 1414–1426 (2010)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Liu, H., Klomp, N., Heynderickx, I.: A no-reference metric for perceived ringing artifacts in images. IEEE Transactions on Circuits and Systems for Video Technology 20(4), 529–539 (2010)CrossRefGoogle Scholar
  27. 27.
    Zuo, B.X., Ming, D.L., Tian, J.W.: Perceptual ringing metric to evaluate the quality of images restored using blind deconvolution algorithms. Optical Engineering 48(3), 037004–037004 (2009)Google Scholar
  28. 28.
    Liu, Y., Wang, J., Cho, S., Finkelstein, A., Rusinkiewicz, S.: A no-reference metric for evaluating the quality of motion deblurring. ACM Transactions on Graphics (SIGGRAPH Asia) (2013)Google Scholar
  29. 29.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 14–19 (1990)Google Scholar
  30. 30.
    Peli, E.: Contrast sensitivity function and image discrimination. Journal of Optical Society of America 18(2), 283–293 (2001)CrossRefGoogle Scholar
  31. 31.
    Tang, J., Kim, J., Peli, E.: Image enhancement in the JPEG domain for people with vision impairment. IEEE Transactions on Biomedical Engineering 51(11), 2013–2023 (2004)CrossRefGoogle Scholar
  32. 32.
    Reinhard, E., Shirley, P., Ashikhmin, M., Troscianko, T.: Second order image statistics in computer graphics. In: Symposium on Applied Perception in Graphics and Visualization, pp. 99–106 (2004)Google Scholar
  33. 33.
    Tikhonov, A., Arsenin, V.: Solutions of Ill-posed Problems. Winston and Sons, Washington (1977)zbMATHGoogle Scholar
  34. 34.
    Goldstein, T., Osher, S.: The split Bsregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)CrossRefGoogle Scholar
  36. 36.
    Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing 4(7), 932–946 (1995)CrossRefGoogle Scholar
  37. 37.
    Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM Journal on Scientific Computing 31(4), 2842–2865 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Ben-Ezra, M., Nayar, S.: Motion-based motion deblurring. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 689–698 (2004)CrossRefGoogle Scholar
  39. 39.
    Tai, Y.W., Du, H., Brown, M.S., Lin, S.: Image/video deblurring using a hybrid camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ali Mosleh
    • 1
  • J. M. Pierre Langlois
    • 1
  • Paul Green
    • 2
  1. 1.École Polytechnique de MontréalCanada
  2. 2.AlgoluxCanada

Personalised recommendations