Modeling for Verification

  • Sanjit A. Seshia
  • Natasha Sharygina
  • Stavros Tripakis


System modeling is the initial, and often crucial, step in verification. The right choice of model and modeling language is important for both designers and users of verification tools. This chapter aims to provide a guide to system modeling in four stages. First, it provides an overview of the main issues one must consider in modeling systems for verification. These issues involve both the selection or design of a modeling language and the steps of model creation. Next, it introduces a simple modeling language, sml, for illustrating the issues involved in selecting or designing a modeling language. sml uses an abstract state machine formalism that captures key features of widely-used languages based on transition system representations. We introduce the simple modeling language to simplify the connection between languages used by practitioners (such as Verilog, Simulink, or C) and various underlying formalisms (e.g., automata or Kripke structures) used in model checking. Third, the chapter demonstrates key steps in model creation using sml with illustrative examples. Finally, the presented modeling language sml is mapped to standard formalisms such as Kripke structures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126 (1987) CrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Inf. Comput. 104(1), 2–34 (1993) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.: Logics and models of real time: a survey. In: Real Time: Theory in Practice. LNCS, vol. 600 (1992) zbMATHGoogle Scholar
  6. 6.
    Alur, R., Henzinger, T.: Reactive modules. Form. Methods Syst. Des. 15, 7–48 (1999) CrossRefGoogle Scholar
  7. 7.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Performance evaluation and model checking join forces. Commun. ACM 53(9), 76–85 (2010) CrossRefGoogle Scholar
  8. 8.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P., Siegle, M. (eds.): Validation of Stochastic Systems—A Guide to Current Research. LNCS, vol. 2925. Springer, Heidelberg (2004) zbMATHGoogle Scholar
  9. 9.
    Baier, C., Majster-Cederbaum, M.: Denotational semantics in the CPO and metric approach. Theor. Comput. Sci. 135(2), 171–220 (1994) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, R., Sangiovanni-Vincentelli, A.: Metropolis: an integrated electronic system design environment. IEEE Comput. 36, 45–52 (2003) CrossRefGoogle Scholar
  11. 11.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 4. IOS Press, Amsterdam (2009). Chap. 8 Google Scholar
  12. 12.
    Behrmann, G., Larsen, K., Rasmussen, J.: Priced timed automata: algorithms and applications. In: Third International Symposium on Formal Methods for Components and Objects (FMCO), pp. 162–182 (2004) Google Scholar
  13. 13.
    Benveniste, A., Caspi, P., Lublinerman, R., Tripakis, S.: Actors without directors: a Kahnian view of heterogeneous systems. In: HSCC’09: Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control. LNCS, pp. 46–60. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00602-9_4 CrossRefzbMATHGoogle Scholar
  14. 14.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992) CrossRefGoogle Scholar
  15. 15.
    Brady, B., Bryant, R., Seshia, S.: Abstracting RTL designs to the term level. Tech. Rep. UCB/EECS-2008-136, EECS Department, University of California, Berkeley (2008)
  16. 16.
    Brady, B., Bryant, R., Seshia, S., O’Leary, J.: ATLAS: automatic term-level abstraction of RTL designs. In: Proceedings of the Eighth ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE) (2010) Google Scholar
  17. 17.
    Broman, D., Lee, E., Tripakis, S., Törngren, M.: Viewpoints, formalisms, languages, and tools for cyber-physical systems. In: 6th International Workshop on Multi-paradigm Modeling (MPM’12) (2012) Google Scholar
  18. 18.
    Broy, M., Stolen, K.: Specification and Development of Interactive Systems. Monographs in Computer Science, vol. 62. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  19. 19.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986) CrossRefGoogle Scholar
  20. 20.
    Bryant, R., Lahiri, S., Seshia, S.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K. (eds.) Proc. Computer-Aided Verification (CAV’02). LNCS, vol. 2404, pp. 78–92 (2002) CrossRefGoogle Scholar
  21. 21.
    Buck, J.: Scheduling dynamic dataflow graphs with bounded memory using the token flow model. Ph.D. thesis, University of California, Berkeley (1993) Google Scholar
  22. 22.
    Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: a declarative language for programming synchronous systems. In: 14th ACM Symp. POPL. ACM, New York (1987) Google Scholar
  23. 23.
    Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Proc. Computer Science Logic (CSL). LNCS, vol. 5213, pp. 385–400 (2008) CrossRefGoogle Scholar
  24. 24.
    Chatterjee, K., Doyen, L., Henzinger, T.: Alternating weighted automata. In: Fundamentals of Computation Theory (FCT). LNCS, vol. 5699, pp. 3–13 (2009) CrossRefGoogle Scholar
  25. 25.
    Clarke, E., Grumberg, O., Peled, D. (eds.): Model Checking. MIT Press, Cambridge (2001) zbMATHGoogle Scholar
  26. 26.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5, 511–523 (1971) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cruz, R.L.: A calculus for network delay, part I. Network elements in isolation. IEEE Trans. Inf. Theory 37(1), 114–131 (1991) CrossRefGoogle Scholar
  28. 28.
    Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Form. Methods Syst. Des. 19(1), 45–80 (2001) CrossRefGoogle Scholar
  29. 29.
    Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A., Yang, G., Zeng, H., Zhu, Q.: A next-generation design framework for platform-based design. In: Conference on Using Hardware Design and Verification Languages (DVCon), vol. 152 (2007) Google Scholar
  30. 30.
    Davis, M.: Markov Models and Optimization. Chapman & Hall, London (1993) CrossRefGoogle Scholar
  31. 31.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Henzinger, T., Sontag, E. (eds.) Hybrid Systems III: Verification and Control. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  32. 32.
    Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003) CrossRefGoogle Scholar
  33. 33.
    Fokkink, W.: Introduction to Process Algebra. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  34. 34.
    Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): Abstract State Machines, Theory and Applications, Proceedings of the International Workshop, ASM 2000, Monte Verità, Switzerland, March 19–24, 2000. LNCS, vol. 1912. Springer, Heidelberg (2000) Google Scholar
  35. 35.
    Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8, 231–274 (1987) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Hoare, C.: Communicating Sequential Processes. Prentice Hall, New York (1985) zbMATHGoogle Scholar
  37. 37.
    Holcomb, D., Brady, B., Seshia, S.: Abstraction-based performance analysis of NoCs. In: Proceedings of the Design Automation Conference (DAC), pp. 492–497 (2011) Google Scholar
  38. 38.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Reading (2006) zbMATHGoogle Scholar
  39. 39.
    Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Hybrid Systems: Computation and Control (HSCC). LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  40. 40.
    ITU: Z.120—Message Sequence Chart (MSC). Available at (02/2011)
  41. 41.
    ITU: Z.120 Annex B: Formal semantics of Message Sequence Charts. Available at (04/1998)
  42. 42.
    Kahn, G.: The semantics of a simple language for parallel programming. In: Information Processing 74. Proceedings of IFIP Congress, vol. 74. North-Holland, Amsterdam (1974) Google Scholar
  43. 43.
    Karp, R., Miller, R.: Properties of a model for parallel computations: determinacy, termination, queueing. SIAM J. Appl. Math. 14(6), 1390–1411 (1966) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn. McGraw-Hill, New York (1978) zbMATHGoogle Scholar
  45. 45.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) Formal Methods for the Design of Computer, Communication and Software Systems: Performance Evaluation (SFM’07). LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  46. 46.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3(2), 125–143 (1977) MathSciNetCrossRefGoogle Scholar
  47. 47.
    Larsen, K., Petterson, P., Yi, W.: Uppaal in a nutshell. Software Tools for Technology Transfer 1(1/2) (1997) CrossRefGoogle Scholar
  48. 48.
    Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987) CrossRefGoogle Scholar
  49. 49.
    Lee, E., Seshia, S.: Introduction to Embedded Systems—A Cyber-physical Systems Approach (2011) zbMATHGoogle Scholar
  50. 50.
    Liu, X., Lee, E.: CPO semantics of timed interactive actor networks. Theor. Comput. Sci. 409(1), 110–125 (2008) MathSciNetCrossRefGoogle Scholar
  51. 51.
    Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009) CrossRefGoogle Scholar
  52. 52.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991) zbMATHGoogle Scholar
  53. 53.
    Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980) zbMATHGoogle Scholar
  54. 54.
    Milner, R.: Communicating and Mobile Systems: The \(\pi\)-Calculus. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  55. 55.
    Peh, L.S.: Flow control and micro-architectural mechanisms for extending the performance of interconnection networks. Ph.D. thesis, Stanford University (2001) Google Scholar
  56. 56.
    Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985) CrossRefGoogle Scholar
  57. 57.
    Seshia, S.: Quantitative analysis of software: challenges and recent advances. In: 7th International Workshop on Formal Aspects of Component Software (FACS) (2010) Google Scholar
  58. 58.
    Stergiou, C., Tripakis, S., Matsikoudis, E., Lee, E.: On the verification of timed discrete-event models. In: FORMATS 2013. Springer, Heidelberg (2013) Google Scholar
  59. 59.
    Theelen, B., Geilen, M., Stuijk, S., Gheorghita, S., Basten, T., Voeten, J., Ghamarian, A.: Scenario-aware dataflow. Tech. Rep. ESR-2008-08, Eindhoven University of Technology, (2008) Google Scholar
  60. 60.
    Tripakis, S.: Compositionality in the science of system design. Proc. IEEE 104(5), 960–972 (2016) CrossRefGoogle Scholar
  61. 61.
    Tripakis, S., Stergiou, C., Shaver, C., Lee, E.: A modular formal semantics for Ptolemy. Math. Struct. Comput. Sci. 23, 834–881 (2013). doi: 10.1017/S0960129512000278 MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Yates, R.: Networks of real-time processes. In: Best, E. (ed.) Proc. of the 4th Int. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 715. Springer, Heidelberg (1993) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sanjit A. Seshia
    • 1
  • Natasha Sharygina
    • 2
  • Stavros Tripakis
    • 1
    • 3
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.Università della Svizzera italianaLuganoSwitzerland
  3. 3.Aalto UniversityEspooFinland

Personalised recommendations