Skip to main content

Excitation and Deconvolution in Ultrasound Nondestructive Testing Systems

  • Chapter
  • First Online:
Ultrasonic Nondestructive Evaluation Systems

Abstract

The pulse-echo (PuE) model based on short pulses is introduced as a starting point. Its limits in terms of signal-to-noise ratio (SNR) are reviewed, together with the tradeoff between the excitation energy and the time resolution. It is shown how signal processing can improve the overall performance in terms of system sensitivity and resolution as long as the exciting waveform is chosen taking into account the system characteristics and is in agreement with the adopted processing techniques. The degrees of freedom on which one can operate are the time evolution law of the excitation signal and the processing technique adopted on the receiving end. In their exploitation, the designer should consider the physical characteristics of the hardware devices being employed in order to optimize the overall performance. The importance of introducing merit factors is discussed. By offering a quantitative measure of system performance, they are indispensable tools to drive formal optimization strategies and for comparing different approaches. Application-related merit factors are introduced for trying to overcome some current limitations and to prepare the ground for the extension of ultrasonic techniques to multiple input, multiple output (MIMO) systems, which are considered in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams JW (1991) A new optimal window. IEEE Trans Signal Process 39(8):1753–1769

    Article  Google Scholar 

  2. Betta G, Burrascano P, Ferrigno L, Laracca M, Ricci M, Silipigni G (2013) On the use of complex excitation sequences for eddy current testing. 19th symposium IMEKO TC4 and 17th IWADC workshop on advances in instrumentation and sensors interoperability, Barcelona, Spain

    Google Scholar 

  3. Blitz J, Simpson G (1996) Ultrasonic methods of non-destructive testing, non-destructive evaluation series, vol 2. Springer, New York

    Google Scholar 

  4. Bordier J, Fink M, Le Brun A, Cohen-Tenoudji F (1991) The influence of multiple scattering in incoherent ultrasonic inspection of coarse grain stainless steel. In: Proceedings of the 1991 IEEE ultrasonics symposium, IEEE, pp 803–808

    Google Scholar 

  5. Budišin SZ (1991) Efficient pulse compressor for Golay complementary sequences. Electron Lett 27(3):219–220

    Article  Google Scholar 

  6. Burrus CSS, Parks TW (1991) DFT/FFT and convolution algorithms: theory and implementation. Wiley, New York

    Google Scholar 

  7. Caporale S, Callegari S, Ricci M, Burrascano P (2013) Constant envelope pseudo orthogonal excitations for ultrasound testing. In: Proceedings of the 18th international conference on Digital Signal Processing (DSP), IEEE, pp 1–8

    Google Scholar 

  8. Cau F, Fanni A, Montisci A, Testoni P, Usai M (2006) A signal-processing tool for non-destructive testing of inaccessible pipes. Eng Appl Artif Intell 19(7):753–760

    Article  Google Scholar 

  9. Challis RE, Ivchenko VG (2011) Sub-threshold sampling in a correlation-based ultrasonic spectrometer. Meas Sci Technol 22(2):1–12

    Article  Google Scholar 

  10. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189

    Article  Google Scholar 

  11. Cohen FS (1992) Modeling of ultrasound speckle with application in flaw detection in metals. IEEE Trans Signal Process 40(3):624–632

    Article  Google Scholar 

  12. Cohn M, Lempel A (1977) On fast M-sequence transforms (corresp.). IEEE Trans Inf Theory 23(1):135–137

    Article  MATH  MathSciNet  Google Scholar 

  13. Cook C (2012) Radar signals: an introduction to theory and application. Elsevier, New York

    Google Scholar 

  14. Farina A (2000) Simultaneous measurement of impulse response and distortion with a swept-sine technique. Audio Engineering Society Convention 108, Audio Engineering Society

    Google Scholar 

  15. Gan TH, Hutchins DA, Billson DR, Schindel DW (2001) The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 39(3):181–194

    Article  Google Scholar 

  16. Garcia-Rodriguez M, Yañez Y, Garcia-Hernandez MJ, Salazar J, Turo A, Chavez JA (2010) Application of golay codes to improve the dynamic range in ultrasonic lamb waves air-coupled systems. NDT E Int 43(8):677–686

    Article  Google Scholar 

  17. Gardner WG (1994) Efficient convolution without input/output delay. Audio Engineering Society Convention '97, Audio Engineering Society

    Google Scholar 

  18. Golay MJE (1961) Complementary series. IRE Trans Inf Theory 7(2):82–87

    Article  MathSciNet  Google Scholar 

  19. Golomb SW, Welch LR, Goldstein RM, Hales AW (1982) Shift register sequences, vol 78. Aegean Park Press, Laguna Hills

    Google Scholar 

  20. Harris FJ (1978) On the use of windows for harmonic analysis with the discrete fourier transform. Proc IEEE 66(1):51–83

    Google Scholar 

  21. Hernández A, Ureña J, Hernanz D, García JJ, Mazo M, Dérutin JP, Serot J, Palazuelos SE (2003) Real-time implementation of an efficient golay correlator (EGC) applied to ultrasonic sensorial systems. Microprocess Microsyst 27(8):397–406

    Article  Google Scholar 

  22. Hunt B (1971) A matrix theory proof of the discrete convolution theorem. IEEE Trans Audio Electroacoust 19(4):285–288

    Article  MathSciNet  Google Scholar 

  23. Hutchins D, Burrascano P, Davis L, Laureti S, Ricci M (2014) Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation. Ultrasonics 54(7):1745–1759

    Article  Google Scholar 

  24. Klauder JR, Price AC, Darlington S, Albersheim WJ (1960) The theory and design of chirp radars. Bell Syst Tech J 39(4):745–808

    Article  Google Scholar 

  25. Lazaro JC, San Emeterio JL, Ramos A, Fernandez-Marron JL (2002) Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40(1):263–267

    Article  Google Scholar 

  26. Lee BB, Furgason ES (1983) High-speed digital Golay code flaw detection system. Ultrasonics 21(4):153–161

    Article  Google Scholar 

  27. Legendre S, Massicotte D, Goyette J, Bose TK (2000) Wavelet-transform-based method of analysis for lamb-wave ultrasonic NDE signals. IEEE Trans Instrum Meas 49(3):524–530

    Article  Google Scholar 

  28. Lu Y, Michaels JE (2008) Numerical implementation of matching pursuit for the analysis of complex ultrasonic signals. IEEE Trans Ultrason Ferroelectr Freq Control 55(1):173–182

    Article  Google Scholar 

  29. Luke HD (1988) Sequences and arrays with perfect periodic correlation. IEEE Trans Aerosp Electron Syst 24(3):287–294

    Article  Google Scholar 

  30. Milleit RE (1970) A matched-filter pulse-compression system using a nonlinear FM waveform. IEEE Trans Aerosp Electron Syst 6(1):73–78.

    Article  Google Scholar 

  31. Morozov M, Tian GY, Edgar D (2009) Comparison of pec and sfec nde techniques. Nondestruct Test Eval 24(1–2):153–164

    Article  Google Scholar 

  32. Mulaveesala R, Tuli S (2006) Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl Phys Lett 89(19):19191–3

    Article  Google Scholar 

  33. Nowicki A, Trots I, Lewin PA, Secomski W, Tymkiewicz R (2007) Influence of the ultrasound transducer bandwidth on selection of the complementary Golay bit code length. Ultrasonics 47(1):64–73

    Article  Google Scholar 

  34. Oppenheim AV, George VC (2010) 6.011 introduction to communication, control, and signal processing. MIT OpenCourseWare

    Google Scholar 

  35. Pallav P, Gan TH, Hutchins DA (2007) Elliptical-Tukey chirp signal for high-resolution, air-coupled ultrasonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1530–1540

    Article  Google Scholar 

  36. Phang APY, Challis RE, Ivchenko VG, Kalashnikov AN (2008) A field programmable gate array-based ultrasonic spectrometer. Meas Sci Technol 19(4):1–13

    Article  Google Scholar 

  37. Pollakowski M, Ermert H (1994) Chirp signal matching and signal power optimization in pulse-echo mode ultrasonic nondestructive testing. IEEE Trans Ultrason Ferroelectr Freq Control 41(5):655–659

    Article  Google Scholar 

  38. Prada C, Kerbrat E, Cassereau D, Fink M (2002) Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Probl 18(6):1761–1773

    Article  MATH  MathSciNet  Google Scholar 

  39. Ricci M, Senni L, Burrascano P (2012) Exploiting pseudorandom sequences to enhance noise immunity for air-coupled ultrasonic nondestructive testing. IEEE Trans Instrum Meas 61(11):2905–2915

    Article  Google Scholar 

  40. Rodríguez MA, San Emeterio JL, Lazaro JC, Ramos A (2004) Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner–Ville transform processing. Ultrasonics 42(1):847–851

    Article  Google Scholar 

  41. Sachs J, Peyerl P, Wöckel S, Kmec M, Herrmann R, Zetik R (2007) Liquid and moisture sensing by ultra-wideband pseudo-noise sequence signals. Meas Sci Technol 18(4):1074–1087

    Article  Google Scholar 

  42. Sarwate DV, Pursley MB (1980) Crosscorrelation properties of pseudorandom and related sequences. Proc IEEE 68(5):593–619

    Article  Google Scholar 

  43. Schmerr L, Song JS (2007) Ultrasonic nondestructive evaluation systems: models and measurements. Springer, New York

    Book  Google Scholar 

  44. Schroeder MR (1979) Integrated-impulse method measuring sound decay without using impulses. J Acoust Soc Am 66(2):497–500

    Article  Google Scholar 

  45. Stan GB, Embrechts JJ, Archambeau D (2002) Comparison of different impulse response measurement techniques. J Audio Eng Soc 50(4):249–262

    Google Scholar 

  46. Strickland D, Mourou G (1985) Compression of amplified chirped optical pulses. Opt Commun 55(6):447–449

    Article  Google Scholar 

  47. Svilainis L, Lukoseviciute K, Dumbrava V, Chaziachmetovas A (2013) Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain. Measurement 46(10):3950–3958

    Article  Google Scholar 

  48. Turin G (1960) An introduction to matched filters. IRE Trans Inf Theory 6(3):311–329.

    Article  MathSciNet  Google Scholar 

  49. Turin GL (1976) An introduction to digital matched filters. Proc IEEE 64(7):1092–1112

    Article  MathSciNet  Google Scholar 

  50. Wei L, Huang Zy, Que Pw (2009) Sparse deconvolution method for improving the time-resolution of ultrasonic NDE signals. NDT E Int 42(5):430–434

    Article  Google Scholar 

  51. White JDH, Challis RE (1992) A Golay sequencer based NDT system for highly attenuating materials. In: IEE colloquium on non-contacting and remote NDT, IET, pp 1–7

    Google Scholar 

  52. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, vol 2. MIT Press, Cambridge

    Google Scholar 

  53. Xiang N (1992) Using m-sequences for determining the impulse responses of LTI-systems. Signal Process 28(2):139–152

    Article  MATH  Google Scholar 

  54. Xiang N, Schroeder MR (2003) Reciprocal maximum-length sequence pairs for acoustical dual source measurements. J Acoust Soc Am 113(5):2754–2761

    Article  Google Scholar 

  55. Zhu Y, Weight JP (1994) Ultrasonic nondestructive evaluation of highly scattering materials using adaptive filtering and detection. IEEE Trans Ultrason Ferroelectr Freq Control 41(1):26–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Caporale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caporale, S., Callegari, S., Hutchins, D., Laureti, S., Burrascano, P., Ricci, M. (2015). Excitation and Deconvolution in Ultrasound Nondestructive Testing Systems. In: Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M. (eds) Ultrasonic Nondestructive Evaluation Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-10566-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10566-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10565-9

  • Online ISBN: 978-3-319-10566-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics