Skip to main content

Triboluminescence

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This works seeks to summarize recent advances in experimental studying of triboluminescence—defined here as the light emission when a material is subjected to rubbing, scratching, rolling, impacting or other mechanical agitation—and elucidate the basic mechanisms whereby triboluminescence is excited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “Triboluminescence”, Oxford Dictionaries. (Oxford University Press, Oxford, 2010)

    Google Scholar 

  2. H. Blok, The flash temperature concept. Wear 6, 483–94 (1963)

    Article  Google Scholar 

  3. G.P.H. Gubbels, G.J.F.T. van der Beek, A.L. Hoep, F.L.M. Delbressine, H. van Halewijn, Diamond tool wear when cutting amorphous polymers. CIRP Annal. Manuf. Technol. 53, 447–450 (2004)

    Article  Google Scholar 

  4. F. Freund, Charge generation and propagation in igneous rocks. J. Geodyn. 33, 543–570 (2002)

    Article  Google Scholar 

  5. F. St-Laurent, J.S. Derr, F.T. Freund, Earthquake lights and the stress-activation of positive hole charge carriers in rocks. Phys. Chem. Earth Parts A/B/C 31, 305–312 (2006)

    Article  Google Scholar 

  6. T.V. Losseva, I.V. Nemchinov, Earthquake lights and rupture processes. Nat. Hazards Earth Syst. Sci. 5, 649–656 (2005)

    Article  ADS  Google Scholar 

  7. J. Muto, H. Nagahama, T. Miura, I. Arakawa, Frictional discharge at fault asperities: origin of fractal seismo-electromagnetic radiation. Tectonophysics 431, 113–122 (2007)

    Article  ADS  Google Scholar 

  8. C. Helling, M. Jardine, D. Diver, S. Witte, Dust cloud lightning in extraterrestrial atmospheres. Planet. Space Sci. 77, 152–157 (2013)

    Article  ADS  Google Scholar 

  9. A.A. Sickafoose, J.E. Colwell, M. Horányi, S. Robertson, Experimental investigations on photoelectric and triboelectric charging of dust. J. Geophys. Res. Space Phys. 106, 8343–8356 (2001)

    Article  ADS  Google Scholar 

  10. A.J. Walton, Triboluminescence. Adv. Phys. 26, 887–948 (1977)

    Article  ADS  Google Scholar 

  11. L.J. Kricka, J. Stroebel, P.E. Stanley, Triboluminescence: 1968–1998. Luminescence 14, 215–220 (1999)

    Article  Google Scholar 

  12. B.V. Derjaguin, N.A. Krotova, Y.P. Toporov, in Emission of High-Speed Electrons and Other Phenomena Accompanying the Process of Breaking Adhesion Bonds, ed. by J.M. Georges. Tribology Series (Elsevier, Amsterdam, 1981), pp. 471–87

    Google Scholar 

  13. T. Miura, M. Chini, R. Bennewitz, Forces, charges, and light emission during the rupture of adhesive contacts. J. Appl. Phys. 102, 103509–103516 (2007)

    Article  ADS  Google Scholar 

  14. Experience faite a l’observatoire sur le barometre simple touchant un nouveau phenomene qu’on ya découvert. Le Journal des sçavans (Académie des inscriptions et belles-lettres, Paris, France, 1676)

    Google Scholar 

  15. H.B. Weiser, I.I. Crystalloluminescence, J. Phys. Chem. 22, 576–595 (1917)

    Article  Google Scholar 

  16. M.P. Brenner, S. Hilgenfeldt, D. Lohse, Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002)

    Article  ADS  Google Scholar 

  17. Y. Tsuboi, T. Seto, N. Kitamura, Laser-induced shock wave can spark triboluminescence of amorphous sugars. J. Phys. Chem. A 112, 6517–6521 (2008)

    Article  Google Scholar 

  18. P.Y. Butyagin, The luminescence accompanying mechanical deformation and rupture of polymers. Vysokomol soyed A12, 290–299 (1970)

    Google Scholar 

  19. B.P. Chandra, K.K. Shrivastava, Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture. J. Phys. Chem. Solids 39, 939–940 (1978)

    Article  ADS  Google Scholar 

  20. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  ADS  Google Scholar 

  21. B.P. Chandra, Mechanoluminescence of nanoparticles. Open Nanosci. J. 5, 45–58 (2011)

    Article  Google Scholar 

  22. J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, X. Wang, An intense elastico-mechanoluminescence material CaZnOS:Mn\(^{2+}\) for sensing and imaging multiple mechanical stresses. Opt Express 21, 12976–12986 (2013)

    Article  ADS  Google Scholar 

  23. E.A. Deulin, V.P. Mikhailov, Y.V. Panfilov, R.A. Nevshupa, Mechanics and Physics of Precise Vacuum Mechanisms (Springer, Dordrecht, 2010)

    Book  Google Scholar 

  24. V.E. Orel, I.N. Kadyuk, N.N. Dzyatkovskaya, M.I. Danko, Y.I. Mel’nic, Mechanoluminescence: lymphocyte analysis after exposure to ionizing radiation. Luminescence 15, 29–36 (2000)

    Article  Google Scholar 

  25. V.E. Orel, A.V. Romanov, N.N. Dzyatkovskaya, I. Mel’nik, The device and algorithm for estimation of the mechanoemisson chaos in blood of patients with gastric cancer. Med. Eng. Phys. 24, 365–371 (2002)

    Article  Google Scholar 

  26. G. Heinike, Tribochemistry (Carl Hanser Verlag, Munchen, 1984)

    Google Scholar 

  27. B. Vick, M.J. Furey, An investigation into the influence of frictionally generated surface temperatures on thermionic emission. Wear 254, 1155–1161 (2003)

    Article  Google Scholar 

  28. R. Nevshupa, The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units. J. Frict. Wear 30, 118–126 (2009)

    Article  Google Scholar 

  29. J.D. Schall, G. Gao, J.A. Harrison, Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)

    Article  Google Scholar 

  30. T.-B. Ma, Y.-Z. Hu, H. Wang, Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 47, 1953–1957 (2009)

    Article  Google Scholar 

  31. A.I. Rusanov, Thermal effects in mechanochemistry. Russ. J. Gen. Chem. 72, 327–344 (2002)

    Article  Google Scholar 

  32. P.Y. Butyagin, Problems in mechanochemistry and prospects for its development. Russ. Chem. Rev. 63, 965 (1994)

    Article  ADS  Google Scholar 

  33. P.Y. Butyagin, Structural disorder and mechanochemical reactions in solids. Russ. Chem. Rev. 53, 1025–1038 (1984)

    Article  ADS  Google Scholar 

  34. T.E. Fischer, Tribochemistry. Annual review material. Science 18, 303–323 (1988)

    Google Scholar 

  35. S.L. Craig, Mechanochemistry: a tour of force. Nature 487, 176–177 (2012)

    Article  ADS  Google Scholar 

  36. B.P. Chandra, S. Tiwari, M. Ramrakhiani, M.H. Ansari, Mechanoluminescence in centrosymmetric crystals. Cryst. Res. Technol. 26, 767–781 (1991)

    Article  Google Scholar 

  37. R.A. Nevshupa, Triboemission: an attempt of generalized classification, in Tribology: Science Applications, ed. by C. Kajdas (PAS, Vienna, 2004), pp. 11–25

    Google Scholar 

  38. J. Thevenet, M. Siroux, B. Desmet, Measurements of brake disc surface temperature and emissivity by two-color pyrometry. Appl. Therm. Eng. 30, 753–759 (2010)

    Article  Google Scholar 

  39. K. Nakayama, R.A. Nevshupa, Plasma generation in a gap around a sliding contact. J. Phys. D Appl. Phys. 35, L53–L56 (2002)

    Article  ADS  Google Scholar 

  40. V.A. Kluev, T.N. Vladikina, Y.P. Toporov, V.J. Anisimova, B.V. Derjaguin, Emission phenomena accompanying the triboelectrification process in vacuum. IEEE Trans. Ind. Appl. IA-14, 544–546 (1978)

    Google Scholar 

  41. J.P. Duignan, I.D.H. Oswald, I.C. Sage, L.M. Sweeting, K. Tanaka, T. Ishihara et al., Do triboluminescence spectra really show a spectral shift relative to photoluminescence spectra? J. Lumin. 97, 115–126 (2002)

    Article  Google Scholar 

  42. R.A. Nevshupa, Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J. Phys. D Appl. Phys. 46, 185501 (2013)

    Article  ADS  Google Scholar 

  43. L.M. Sweeting, Triboluminescence with and without Air. Chem. Mater. 13, 854–870 (2001)

    Article  Google Scholar 

  44. C.N. Xu, Coatings, in Encyclopedia of Smart Materials, ed. by M. Schwartz (Willey, New York, 2002), pp. 190–201

    Google Scholar 

  45. E.A. Varentsov, Y.A. Khrustalev, Mechanoemission and mechanochemistry of molecular organic crystals. Russ. Chem. Rev. 64, 783–797 (1995)

    Article  ADS  Google Scholar 

  46. K. Hiratsuka, T. Yoshida, The twin-ring tribometer–characterizing sliding wear of metals excluding the effect of contact configurations. Wear 270, 742–750 (2011)

    Article  Google Scholar 

  47. J. Muto, H. Nagahama, T. Miura, I. Arakawa, Frictional discharge plasma from natural semiconductor/insulator junctions: origin of seismo-electromagnetic radiation. Phys. Chem. Earth Parts A/B/C 31, 346–351 (2006)

    Article  Google Scholar 

  48. K. Nakayama, H. Hashimoto, Effect of surrounding gas pressure on Triboemission of charged particles and photons from wearing ceramic surfaces. Tribol. Trans. 38, 35–42 (1995)

    Article  Google Scholar 

  49. G.E. Hardy, J.I. Zink, Triboluminescence and pressure dependence of the photoluminescence of tetrahedral manganese(II) complexes. Inorg. Chem. 15, 3061–3065 (1976)

    Article  Google Scholar 

  50. L.M. Sweeting, J.L. Guido, An improved method for determining triboluminescence spectra. J. Lumin. 33, 167–173 (1985)

    Article  Google Scholar 

  51. R.A. Nevshupa, K. Nakayama, Triboemission behavior of photons at dielectric/dielectric sliding: time dependence nature at 10\(^{-4}\)-10\(^{4}\) s. J. Appl. Phys. 93, 9321–9328 (2003)

    Article  ADS  Google Scholar 

  52. K. Hiratsuka, K. Hosotani, Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers. Tribol. Int. 55, 87–99 (2012)

    Article  Google Scholar 

  53. T. Miura, K. Nakayama, Two-dimensional spatial distribution of electric-discharge plasma around a frictional interface between dielectric surfaces. Appl. Phys. Lett. 78, 2979–2981 (2001)

    Article  ADS  Google Scholar 

  54. K. Nakayama, R.A. Nevshupa, Characteristics and pattern of plasma generated at sliding contact. J. Tribol-T Asme 125, 780–787 (2003)

    Article  Google Scholar 

  55. K. Nakayama, R.A. Nevshupa, Effect of dry air pressure on characteristics and patterns of tribomicroplasma. Vacuum 74, 11–17 (2004)

    Article  Google Scholar 

  56. K. Nakayama, The plasma generated and photons emitted in an oil-lubricated sliding contact. J. Phys. D Appl. Phys. 40, 1103–1107 (2007)

    Article  ADS  Google Scholar 

  57. K. Nakayama, Triboplasma generation and triboluminescence: influence of stationary sliding partner. Tribol. Lett. 37, 215–228 (2010)

    Article  Google Scholar 

  58. K. Nakayama, Mechanism of triboplasma generation in oil. Tribol. Lett. 41, 345–351 (2011)

    Article  Google Scholar 

  59. Y.P. Raizer, Gas Discharge Physics (Springer, New York, 1991)

    Book  Google Scholar 

  60. L.B. Loeb, Electrical Coronas, Their Basic Physical Mechanisms (University of California Press, Berkley, 1965)

    Google Scholar 

  61. T. Miura, K. Nakayama, Spectral analysis of photons emitted during scratching of an insulator surface by a diamond in air. J. Appl. Phys. 88, 5444–5447 (2000)

    Article  ADS  Google Scholar 

  62. T. Miura, E. Hosobuchi, I. Arakawa, Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO\(_{2}\), MgO, NaCl, and Al\(_{2}\)O\(_{3}\) (0001). Vacuum 84, 573–577 (2009)

    Article  Google Scholar 

  63. E. Németh, V. Albrecht, G. Schubert, F. Simon, Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity. J. Electrost. 58, 3–16 (2003)

    Article  Google Scholar 

  64. L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angewandte Chemie Int. Ed. 47, 2188–2207 (2008)

    Article  Google Scholar 

  65. H.E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, J.F. Behnke, The barrier discharge: basic properties and applications to surface treatment. Vacuum 71, 417–436 (2003)

    Article  Google Scholar 

  66. R. Nevshupa, Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J. Phys. D Appl. Phys. 46, 185501 (2013)

    Google Scholar 

  67. R.A. Nevshupa, K. Nakayama, Effect of nanometer thin metal film on triboemission of negatively charged particles from dielectric solids. Vacuum 67, 485–490 (2002)

    Article  Google Scholar 

  68. K. Nakayama, M. Tanaka, Simulation analysis of triboplasma generation using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. J. Phys. D Appl. Phys. 45, 495203 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported through the grants of the Ministry of Economy and Competitiveness of Spain RYC-2009-0412, BIA2011-25653 and the project IPT-2012-1167-120000 with the participation of European Regional Development Fund (FEDER). One of the authors (R.N.) also acknowledges the contribution of the COST action TD1208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Nevshupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nevshupa, R., Hiratsuka, K. (2015). Triboluminescence. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_4

Download citation

Publish with us

Policies and ethics