Advertisement

Triboluminescence

  • Roman Nevshupa
  • Kenichi Hiratsuka
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This works seeks to summarize recent advances in experimental studying of triboluminescence—defined here as the light emission when a material is subjected to rubbing, scratching, rolling, impacting or other mechanical agitation—and elucidate the basic mechanisms whereby triboluminescence is excited.

Keywords

Contact Zone Acrylonitrile Butadiene Styrene Frictional Contact Dust Devil Frictional Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported through the grants of the Ministry of Economy and Competitiveness of Spain RYC-2009-0412, BIA2011-25653 and the project IPT-2012-1167-120000 with the participation of European Regional Development Fund (FEDER). One of the authors (R.N.) also acknowledges the contribution of the COST action TD1208.

References

  1. 1.
    “Triboluminescence”, Oxford Dictionaries. (Oxford University Press, Oxford, 2010)Google Scholar
  2. 2.
    H. Blok, The flash temperature concept. Wear 6, 483–94 (1963)CrossRefGoogle Scholar
  3. 3.
    G.P.H. Gubbels, G.J.F.T. van der Beek, A.L. Hoep, F.L.M. Delbressine, H. van Halewijn, Diamond tool wear when cutting amorphous polymers. CIRP Annal. Manuf. Technol. 53, 447–450 (2004)CrossRefGoogle Scholar
  4. 4.
    F. Freund, Charge generation and propagation in igneous rocks. J. Geodyn. 33, 543–570 (2002)CrossRefGoogle Scholar
  5. 5.
    F. St-Laurent, J.S. Derr, F.T. Freund, Earthquake lights and the stress-activation of positive hole charge carriers in rocks. Phys. Chem. Earth Parts A/B/C 31, 305–312 (2006)CrossRefGoogle Scholar
  6. 6.
    T.V. Losseva, I.V. Nemchinov, Earthquake lights and rupture processes. Nat. Hazards Earth Syst. Sci. 5, 649–656 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Muto, H. Nagahama, T. Miura, I. Arakawa, Frictional discharge at fault asperities: origin of fractal seismo-electromagnetic radiation. Tectonophysics 431, 113–122 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    C. Helling, M. Jardine, D. Diver, S. Witte, Dust cloud lightning in extraterrestrial atmospheres. Planet. Space Sci. 77, 152–157 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Sickafoose, J.E. Colwell, M. Horányi, S. Robertson, Experimental investigations on photoelectric and triboelectric charging of dust. J. Geophys. Res. Space Phys. 106, 8343–8356 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Walton, Triboluminescence. Adv. Phys. 26, 887–948 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    L.J. Kricka, J. Stroebel, P.E. Stanley, Triboluminescence: 1968–1998. Luminescence 14, 215–220 (1999)CrossRefGoogle Scholar
  12. 12.
    B.V. Derjaguin, N.A. Krotova, Y.P. Toporov, in Emission of High-Speed Electrons and Other Phenomena Accompanying the Process of Breaking Adhesion Bonds, ed. by J.M. Georges. Tribology Series (Elsevier, Amsterdam, 1981), pp. 471–87Google Scholar
  13. 13.
    T. Miura, M. Chini, R. Bennewitz, Forces, charges, and light emission during the rupture of adhesive contacts. J. Appl. Phys. 102, 103509–103516 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Experience faite a l’observatoire sur le barometre simple touchant un nouveau phenomene qu’on ya découvert. Le Journal des sçavans (Académie des inscriptions et belles-lettres, Paris, France, 1676)Google Scholar
  15. 15.
    H.B. Weiser, I.I. Crystalloluminescence, J. Phys. Chem. 22, 576–595 (1917)CrossRefGoogle Scholar
  16. 16.
    M.P. Brenner, S. Hilgenfeldt, D. Lohse, Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Tsuboi, T. Seto, N. Kitamura, Laser-induced shock wave can spark triboluminescence of amorphous sugars. J. Phys. Chem. A 112, 6517–6521 (2008)CrossRefGoogle Scholar
  18. 18.
    P.Y. Butyagin, The luminescence accompanying mechanical deformation and rupture of polymers. Vysokomol soyed A12, 290–299 (1970)Google Scholar
  19. 19.
    B.P. Chandra, K.K. Shrivastava, Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture. J. Phys. Chem. Solids 39, 939–940 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    B.P. Chandra, Mechanoluminescence of nanoparticles. Open Nanosci. J. 5, 45–58 (2011)CrossRefGoogle Scholar
  22. 22.
    J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, X. Wang, An intense elastico-mechanoluminescence material CaZnOS:Mn\(^{2+}\) for sensing and imaging multiple mechanical stresses. Opt Express 21, 12976–12986 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Deulin, V.P. Mikhailov, Y.V. Panfilov, R.A. Nevshupa, Mechanics and Physics of Precise Vacuum Mechanisms (Springer, Dordrecht, 2010)CrossRefGoogle Scholar
  24. 24.
    V.E. Orel, I.N. Kadyuk, N.N. Dzyatkovskaya, M.I. Danko, Y.I. Mel’nic, Mechanoluminescence: lymphocyte analysis after exposure to ionizing radiation. Luminescence 15, 29–36 (2000)CrossRefGoogle Scholar
  25. 25.
    V.E. Orel, A.V. Romanov, N.N. Dzyatkovskaya, I. Mel’nik, The device and algorithm for estimation of the mechanoemisson chaos in blood of patients with gastric cancer. Med. Eng. Phys. 24, 365–371 (2002)CrossRefGoogle Scholar
  26. 26.
    G. Heinike, Tribochemistry (Carl Hanser Verlag, Munchen, 1984)Google Scholar
  27. 27.
    B. Vick, M.J. Furey, An investigation into the influence of frictionally generated surface temperatures on thermionic emission. Wear 254, 1155–1161 (2003)CrossRefGoogle Scholar
  28. 28.
    R. Nevshupa, The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units. J. Frict. Wear 30, 118–126 (2009)CrossRefGoogle Scholar
  29. 29.
    J.D. Schall, G. Gao, J.A. Harrison, Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)CrossRefGoogle Scholar
  30. 30.
    T.-B. Ma, Y.-Z. Hu, H. Wang, Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 47, 1953–1957 (2009)CrossRefGoogle Scholar
  31. 31.
    A.I. Rusanov, Thermal effects in mechanochemistry. Russ. J. Gen. Chem. 72, 327–344 (2002)CrossRefGoogle Scholar
  32. 32.
    P.Y. Butyagin, Problems in mechanochemistry and prospects for its development. Russ. Chem. Rev. 63, 965 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    P.Y. Butyagin, Structural disorder and mechanochemical reactions in solids. Russ. Chem. Rev. 53, 1025–1038 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    T.E. Fischer, Tribochemistry. Annual review material. Science 18, 303–323 (1988)Google Scholar
  35. 35.
    S.L. Craig, Mechanochemistry: a tour of force. Nature 487, 176–177 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    B.P. Chandra, S. Tiwari, M. Ramrakhiani, M.H. Ansari, Mechanoluminescence in centrosymmetric crystals. Cryst. Res. Technol. 26, 767–781 (1991)CrossRefGoogle Scholar
  37. 37.
    R.A. Nevshupa, Triboemission: an attempt of generalized classification, in Tribology: Science Applications, ed. by C. Kajdas (PAS, Vienna, 2004), pp. 11–25Google Scholar
  38. 38.
    J. Thevenet, M. Siroux, B. Desmet, Measurements of brake disc surface temperature and emissivity by two-color pyrometry. Appl. Therm. Eng. 30, 753–759 (2010)CrossRefGoogle Scholar
  39. 39.
    K. Nakayama, R.A. Nevshupa, Plasma generation in a gap around a sliding contact. J. Phys. D Appl. Phys. 35, L53–L56 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    V.A. Kluev, T.N. Vladikina, Y.P. Toporov, V.J. Anisimova, B.V. Derjaguin, Emission phenomena accompanying the triboelectrification process in vacuum. IEEE Trans. Ind. Appl. IA-14, 544–546 (1978)Google Scholar
  41. 41.
    J.P. Duignan, I.D.H. Oswald, I.C. Sage, L.M. Sweeting, K. Tanaka, T. Ishihara et al., Do triboluminescence spectra really show a spectral shift relative to photoluminescence spectra? J. Lumin. 97, 115–126 (2002)CrossRefGoogle Scholar
  42. 42.
    R.A. Nevshupa, Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J. Phys. D Appl. Phys. 46, 185501 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    L.M. Sweeting, Triboluminescence with and without Air. Chem. Mater. 13, 854–870 (2001)CrossRefGoogle Scholar
  44. 44.
    C.N. Xu, Coatings, in Encyclopedia of Smart Materials, ed. by M. Schwartz (Willey, New York, 2002), pp. 190–201Google Scholar
  45. 45.
    E.A. Varentsov, Y.A. Khrustalev, Mechanoemission and mechanochemistry of molecular organic crystals. Russ. Chem. Rev. 64, 783–797 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    K. Hiratsuka, T. Yoshida, The twin-ring tribometer–characterizing sliding wear of metals excluding the effect of contact configurations. Wear 270, 742–750 (2011)CrossRefGoogle Scholar
  47. 47.
    J. Muto, H. Nagahama, T. Miura, I. Arakawa, Frictional discharge plasma from natural semiconductor/insulator junctions: origin of seismo-electromagnetic radiation. Phys. Chem. Earth Parts A/B/C 31, 346–351 (2006)CrossRefGoogle Scholar
  48. 48.
    K. Nakayama, H. Hashimoto, Effect of surrounding gas pressure on Triboemission of charged particles and photons from wearing ceramic surfaces. Tribol. Trans. 38, 35–42 (1995)CrossRefGoogle Scholar
  49. 49.
    G.E. Hardy, J.I. Zink, Triboluminescence and pressure dependence of the photoluminescence of tetrahedral manganese(II) complexes. Inorg. Chem. 15, 3061–3065 (1976)CrossRefGoogle Scholar
  50. 50.
    L.M. Sweeting, J.L. Guido, An improved method for determining triboluminescence spectra. J. Lumin. 33, 167–173 (1985)CrossRefGoogle Scholar
  51. 51.
    R.A. Nevshupa, K. Nakayama, Triboemission behavior of photons at dielectric/dielectric sliding: time dependence nature at 10\(^{-4}\)-10\(^{4}\) s. J. Appl. Phys. 93, 9321–9328 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    K. Hiratsuka, K. Hosotani, Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers. Tribol. Int. 55, 87–99 (2012)CrossRefGoogle Scholar
  53. 53.
    T. Miura, K. Nakayama, Two-dimensional spatial distribution of electric-discharge plasma around a frictional interface between dielectric surfaces. Appl. Phys. Lett. 78, 2979–2981 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    K. Nakayama, R.A. Nevshupa, Characteristics and pattern of plasma generated at sliding contact. J. Tribol-T Asme 125, 780–787 (2003)CrossRefGoogle Scholar
  55. 55.
    K. Nakayama, R.A. Nevshupa, Effect of dry air pressure on characteristics and patterns of tribomicroplasma. Vacuum 74, 11–17 (2004)CrossRefGoogle Scholar
  56. 56.
    K. Nakayama, The plasma generated and photons emitted in an oil-lubricated sliding contact. J. Phys. D Appl. Phys. 40, 1103–1107 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    K. Nakayama, Triboplasma generation and triboluminescence: influence of stationary sliding partner. Tribol. Lett. 37, 215–228 (2010)CrossRefGoogle Scholar
  58. 58.
    K. Nakayama, Mechanism of triboplasma generation in oil. Tribol. Lett. 41, 345–351 (2011)CrossRefGoogle Scholar
  59. 59.
    Y.P. Raizer, Gas Discharge Physics (Springer, New York, 1991)CrossRefGoogle Scholar
  60. 60.
    L.B. Loeb, Electrical Coronas, Their Basic Physical Mechanisms (University of California Press, Berkley, 1965)Google Scholar
  61. 61.
    T. Miura, K. Nakayama, Spectral analysis of photons emitted during scratching of an insulator surface by a diamond in air. J. Appl. Phys. 88, 5444–5447 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    T. Miura, E. Hosobuchi, I. Arakawa, Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO\(_{2}\), MgO, NaCl, and Al\(_{2}\)O\(_{3}\) (0001). Vacuum 84, 573–577 (2009)CrossRefGoogle Scholar
  63. 63.
    E. Németh, V. Albrecht, G. Schubert, F. Simon, Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity. J. Electrost. 58, 3–16 (2003)CrossRefGoogle Scholar
  64. 64.
    L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angewandte Chemie Int. Ed. 47, 2188–2207 (2008)CrossRefGoogle Scholar
  65. 65.
    H.E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, J.F. Behnke, The barrier discharge: basic properties and applications to surface treatment. Vacuum 71, 417–436 (2003)CrossRefGoogle Scholar
  66. 66.
    R. Nevshupa, Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J. Phys. D Appl. Phys. 46, 185501 (2013)Google Scholar
  67. 67.
    R.A. Nevshupa, K. Nakayama, Effect of nanometer thin metal film on triboemission of negatively charged particles from dielectric solids. Vacuum 67, 485–490 (2002)CrossRefGoogle Scholar
  68. 68.
    K. Nakayama, M. Tanaka, Simulation analysis of triboplasma generation using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. J. Phys. D Appl. Phys. 45, 495203 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IETCC, CSICMadridSpain
  2. 2.Chiba Institute of TechnologyNarashino-shiJapan

Personalised recommendations