Nanoscale Friction and Ultrasonics

  • Maria Teresa Cuberes
Part of the NanoScience and Technology book series (NANO)


The chapter describes different procedures to monitor ultrasonic vibration at a sample surface using an AFM cantilever tip. Both the excitation of normal and shear surface ultrasonic vibration are considered. The possibility to reduce and eliminate friction at nanometer-sized contacts by means of ultrasonic vibration is discussed. Experiments that provide information about nanoscale adhesion hysteresis, and its relationship to friction, are described in detail. The ability of Phase—Heterodyne Force Microscopy to resolve tiny differences in adhesion hysteresis with high sensitivity is remarked.


Ultrasonic Vibration PMMA Matrix Atomic Force Microscope Cantilever Ultrasonic Amplitude Friction Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on ultrasonic machining. Int. J. Mach. Tools Manufact. 38, 239 (1998)Google Scholar
  2. 2.
    A. Akay, Acoustics of friction. J. Acoust. Soc. Am. 111, 1525 (2002)Google Scholar
  3. 3.
    K. Dransfeld, Generation of ultrasonic waves in sliding friction, Chap. 7, in Nanoscience: Friction and Rheology on the Nanometer Scale, ed. by E. Meyer, R.M. Overney, K. Dransfeld, T. Gyalong (World Scientific, Singapore, 1998)Google Scholar
  4. 4.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Atomic scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 942 (1987)Google Scholar
  5. 5.
    G. Meyer, N. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089 (1990)Google Scholar
  6. 6.
    W. Rohrbeck, E. Chilla, Detection of surface acoustic waves by scanning force microscopy. Phys. Stat. Sol. (a) 131, 69 (1992)Google Scholar
  7. 7.
    O. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an Atomic, Force microscope. Jpn. J. Appl. Phys. 32, L1095 (1993)Google Scholar
  8. 8.
    B. Cretin, F. Sthal, Scanning microdeformation microscopy. Appl. Phys. Lett. 62, 829 (1993)Google Scholar
  9. 9.
    K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64(2) (1994)Google Scholar
  10. 10.
    U. Rabe, W. Arnold, Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64, 1493 (1994)Google Scholar
  11. 11.
    T. Hesjedal, E. Chilla, H.-J. Froehlich, Scanning acoustic force microscopy measurements in grating-like electrodes. Appl. Phys. A 61, 237 (1995)Google Scholar
  12. 12.
    N.A. Burnham, A.J. Kulik, G. Gremaud, G.A.D. Briggs, Nanosubharmonics: the dynamics of small nonlinear contacts. Phys. Rev. Lett. 74, 5092 (1995)Google Scholar
  13. 13.
    U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiments. Rev. Sci. Instr. 67, 3281 (1996)Google Scholar
  14. 14.
    K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of the cantilever. Jpn. J. Appl. Phys. 35, 3787 (1996)Google Scholar
  15. 15.
    K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of the cantilever. Jpn. J. Appl. Phys. 35, 3787 (1996)Google Scholar
  16. 16.
    S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate, Contact imaging in the AFM using a high order flexural mode combined with a new sensor. Appl. Phys. Lett. 68, 1427 (1996)Google Scholar
  17. 17.
    P. Variac, B. Cretin, Scanning microdeformation microscopy in reflexion mode. Appl. Phys. Lett. 68, 461 (1996)Google Scholar
  18. 18.
    E. Chilla, T. Hesjedal, H.-J. Fröhlich, Nanoscale determination of phase velocity by scanning acoustic force microscopy. Phys. Rev. B 55, 15852 (1997)Google Scholar
  19. 19.
    F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Phil. Mag. A 80, 2299 (2000)Google Scholar
  20. 20.
    K. Inagaki, O. Kolosov, A. Briggs, O. Wright, Waveguide ultrasonic force microscopy at, 60 MHz. Appl. Phys. Lett. 76, 1836 (2000)Google Scholar
  21. 21.
    M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.V. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D.: Appl. Phys. 33, 2347 (2000)Google Scholar
  22. 22.
    M.T. Cuberes, G.A.D. Briggs, O. Kolosov, Nonlinear detection of ultrasonic vibration of AFM cantilevers in and out of contact with the sample. Nanotechnology 12, 53 (2001)Google Scholar
  23. 23.
    G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field, ultrasound holography. Science 310, 89 (2005)Google Scholar
  24. 24.
    V. Scherer, B. Bhushan, U. Rabe, W. Arnold, Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies. IEEE Trans. Magn. 33, 4077 (1997)Google Scholar
  25. 25.
    V. Scherer, W. Arnold, B. Bhushan, Lateral force microscopy using acoustic force microscopy. Surf. Interface Anal. 27, 578 (1999)Google Scholar
  26. 26.
    M. Reinstädtler, U. Rabe, V. Scherer, U. Hartnann, A. Goldade, B. Bhushan, W. Arnold, On the nanoscale measurement of friction using atomic-force microscopy cantilever torsional resonances. Appl. Phys. Lett. 82, 2604 (2003)Google Scholar
  27. 27.
    M. Reinstädtler, U. Rabe, A. Goldade, B. Bhushan, W. Arnold, Investigating ultra-thin lubricant layers using resonant friction force microscopy. Tribol. Int. 38, 533 (2005)Google Scholar
  28. 28.
    M. Reinstädtler, U. Rabe, V. Scherer, J.A. Turner, W. Arnold, Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf. Sci. 532, 1152 (2003)Google Scholar
  29. 29.
    A. Caron, U. Rabe, M. Reinstätler, J.A. Turner, W. Arnold, Imaging using lateral bending modes of atomic force microscopy cantilevers. Appl. Phys. Lett. 85, 6398 (2004)Google Scholar
  30. 30.
    K. Yamanaka, S. Nakano, Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. A 66, S313 (1998)Google Scholar
  31. 31.
    T. Kawagishi, A. Kato, U. Hoshi, H. Kawakatsu, Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever. Ultramicroscopy 91, 37 (2002)Google Scholar
  32. 32.
    M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold, Imaging and measurement of elasticity and friction using the TRmode. J. Phys. D: Appl. Phys. 38, R269 (2005)Google Scholar
  33. 33.
    O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, P. Grütter, Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 65, 161403 (2002)Google Scholar
  34. 34.
    T. Drobek, R.W. Stark, W.M. Heck, Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys. Rev. B 64, 0454001 (2001)Google Scholar
  35. 35.
    G. Bheme, T. Hesjedal, E. Chilla, H.-J. Fröhlich, Transverse surface acoustic wave detection by scanning acoustic force microscopy. Appl. Phys. Lett. 73, 882 (1998)Google Scholar
  36. 36.
    G. Behme, T. Hesjedal, Simultaneous bimodal surface acoustic-wave velocity measurements by scanning acoustic force microscopy. Appl. Phys. Lett. 77, 759 (2000)Google Scholar
  37. 37.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177 (1997)Google Scholar
  38. 38.
    G. Behme, T. Hesjedal, Influence of ultrasonic surface acoustic waves on local friction studied by lateral force microscopy. Appl. Phys. A 70, 361 (2000)Google Scholar
  39. 39.
    G. Behme, T. Hesjedal, Influence of surface acoustic waves on lateral forces in scanning force microscopies. J. Appl. Phys. 89, 4850 (2001)Google Scholar
  40. 40.
    T. Hesjedal, G. Behme, The origin of ultrasound-induced friction reduction in microscopic mechanical contacts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 356 (2002)Google Scholar
  41. 41.
    K. Inagaki, O. Matsuda, O.B. Wright, Hysteresis of the cantilever shift in ultrasonic force microscopy. Appl. Phys. Lett. 80, 2386 (2002)Google Scholar
  42. 42.
    R. Szoszkiewicz, B.D. Huey, O.V.Kolosov, G.A.D. Briggs, G. Gremaud, A.J. Kulik, Tribology and ultrasonic hysteresis at local scales. Appl. Surf. Sci. 219, 54 (2003)Google Scholar
  43. 43.
    R. Szoszkiewicz, A.J. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)Google Scholar
  44. 44.
    R. Szoszkiewicz, B. Bhushan, B.D. Huey, A.J. Kulik, G. Gremaud, Correlations between adhesion hysteresis and friction at molecular scales. J. Chem. Phys. 122, 144708 (2005)Google Scholar
  45. 45.
    R. Szoszkiewicz, A.J. Kulik, G. Gremaud, Quantitative measure of nanoscale adhesion hysteresis by ultrasonic force microscopy. J. Chem. Phys. 122, 134706 (2005)Google Scholar
  46. 46.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995 (2000)Google Scholar
  47. 47.
    M. Muraoka, W. Arnold, A method of evaluating local elasticity and adhesion energy from the nonlinear response of AFM cantilever vibrations. JSME Int. J. Ser. A 44, 396 (2001)Google Scholar
  48. 48.
    N.S. Tambe, B. Bhushan, Recently, a novel AFM-based technique for studying nanoscale friction at velocities near to 10 nm s-1 has been implemented; see A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J. Phys. D: Appl. Phys. 38, 764 (2005)Google Scholar
  49. 49.
    J. Gao, W.D. Luedtke, U. Landman, Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033 (1998)Google Scholar
  50. 50.
    M. Heuberger, C. Drummond, J. Israelachvili, Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)Google Scholar
  51. 51.
    A. Socoliuc, E. Gnecco et al., submitted.Google Scholar
  52. 52.
    A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)Google Scholar
  53. 53.
    J. Kerssemakers, J.T M. De Hosson, Probing the interface potential in stick/slip friction by a lateral force modulation technique. Surf. Sci. 417, 281 (1998)Google Scholar
  54. 54.
    E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune, Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91 (2003)Google Scholar
  55. 55.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 523 (2004)Google Scholar
  56. 56.
    Z. Tshiprut, A.E. Filippov, M. Urbakh, Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)Google Scholar
  57. 57.
    J. Israelachvili, Chapter 15 in Intermolecular and Surface Forces, 2nd Ed (Academic Press Elsevier Ltd, New york, 1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dpto. Mecánica AplicadaUniversidad de Castilla-La ManchaAlmadénSpain

Personalised recommendations