Skip to main content

Nanoscale Friction and Ultrasonics

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The chapter describes different procedures to monitor ultrasonic vibration at a sample surface using an AFM cantilever tip. Both the excitation of normal and shear surface ultrasonic vibration are considered. The possibility to reduce and eliminate friction at nanometer-sized contacts by means of ultrasonic vibration is discussed. Experiments that provide information about nanoscale adhesion hysteresis, and its relationship to friction, are described in detail. The ability of Phase—Heterodyne Force Microscopy to resolve tiny differences in adhesion hysteresis with high sensitivity is remarked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on ultrasonic machining. Int. J. Mach. Tools Manufact. 38, 239 (1998)

    Google Scholar 

  2. A. Akay, Acoustics of friction. J. Acoust. Soc. Am. 111, 1525 (2002)

    Google Scholar 

  3. K. Dransfeld, Generation of ultrasonic waves in sliding friction, Chap. 7, in Nanoscience: Friction and Rheology on the Nanometer Scale, ed. by E. Meyer, R.M. Overney, K. Dransfeld, T. Gyalong (World Scientific, Singapore, 1998)

    Google Scholar 

  4. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Atomic scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 942 (1987)

    Google Scholar 

  5. G. Meyer, N. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089 (1990)

    Google Scholar 

  6. W. Rohrbeck, E. Chilla, Detection of surface acoustic waves by scanning force microscopy. Phys. Stat. Sol. (a) 131, 69 (1992)

    Google Scholar 

  7. O. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an Atomic, Force microscope. Jpn. J. Appl. Phys. 32, L1095 (1993)

    Google Scholar 

  8. B. Cretin, F. Sthal, Scanning microdeformation microscopy. Appl. Phys. Lett. 62, 829 (1993)

    Google Scholar 

  9. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64(2) (1994)

    Google Scholar 

  10. U. Rabe, W. Arnold, Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64, 1493 (1994)

    Google Scholar 

  11. T. Hesjedal, E. Chilla, H.-J. Froehlich, Scanning acoustic force microscopy measurements in grating-like electrodes. Appl. Phys. A 61, 237 (1995)

    Google Scholar 

  12. N.A. Burnham, A.J. Kulik, G. Gremaud, G.A.D. Briggs, Nanosubharmonics: the dynamics of small nonlinear contacts. Phys. Rev. Lett. 74, 5092 (1995)

    Google Scholar 

  13. U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiments. Rev. Sci. Instr. 67, 3281 (1996)

    Google Scholar 

  14. K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of the cantilever. Jpn. J. Appl. Phys. 35, 3787 (1996)

    Google Scholar 

  15. K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of the cantilever. Jpn. J. Appl. Phys. 35, 3787 (1996)

    Google Scholar 

  16. S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate, Contact imaging in the AFM using a high order flexural mode combined with a new sensor. Appl. Phys. Lett. 68, 1427 (1996)

    Google Scholar 

  17. P. Variac, B. Cretin, Scanning microdeformation microscopy in reflexion mode. Appl. Phys. Lett. 68, 461 (1996)

    Google Scholar 

  18. E. Chilla, T. Hesjedal, H.-J. Fröhlich, Nanoscale determination of phase velocity by scanning acoustic force microscopy. Phys. Rev. B 55, 15852 (1997)

    Google Scholar 

  19. F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Phil. Mag. A 80, 2299 (2000)

    Google Scholar 

  20. K. Inagaki, O. Kolosov, A. Briggs, O. Wright, Waveguide ultrasonic force microscopy at, 60 MHz. Appl. Phys. Lett. 76, 1836 (2000)

    Google Scholar 

  21. M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.V. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D.: Appl. Phys. 33, 2347 (2000)

    Google Scholar 

  22. M.T. Cuberes, G.A.D. Briggs, O. Kolosov, Nonlinear detection of ultrasonic vibration of AFM cantilevers in and out of contact with the sample. Nanotechnology 12, 53 (2001)

    Google Scholar 

  23. G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field, ultrasound holography. Science 310, 89 (2005)

    Google Scholar 

  24. V. Scherer, B. Bhushan, U. Rabe, W. Arnold, Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies. IEEE Trans. Magn. 33, 4077 (1997)

    Google Scholar 

  25. V. Scherer, W. Arnold, B. Bhushan, Lateral force microscopy using acoustic force microscopy. Surf. Interface Anal. 27, 578 (1999)

    Google Scholar 

  26. M. Reinstädtler, U. Rabe, V. Scherer, U. Hartnann, A. Goldade, B. Bhushan, W. Arnold, On the nanoscale measurement of friction using atomic-force microscopy cantilever torsional resonances. Appl. Phys. Lett. 82, 2604 (2003)

    Google Scholar 

  27. M. Reinstädtler, U. Rabe, A. Goldade, B. Bhushan, W. Arnold, Investigating ultra-thin lubricant layers using resonant friction force microscopy. Tribol. Int. 38, 533 (2005)

    Google Scholar 

  28. M. Reinstädtler, U. Rabe, V. Scherer, J.A. Turner, W. Arnold, Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf. Sci. 532, 1152 (2003)

    Google Scholar 

  29. A. Caron, U. Rabe, M. Reinstätler, J.A. Turner, W. Arnold, Imaging using lateral bending modes of atomic force microscopy cantilevers. Appl. Phys. Lett. 85, 6398 (2004)

    Google Scholar 

  30. K. Yamanaka, S. Nakano, Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. A 66, S313 (1998)

    Google Scholar 

  31. T. Kawagishi, A. Kato, U. Hoshi, H. Kawakatsu, Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever. Ultramicroscopy 91, 37 (2002)

    Google Scholar 

  32. M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold, Imaging and measurement of elasticity and friction using the TRmode. J. Phys. D: Appl. Phys. 38, R269 (2005)

    Google Scholar 

  33. O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, P. Grütter, Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 65, 161403 (2002)

    Google Scholar 

  34. T. Drobek, R.W. Stark, W.M. Heck, Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys. Rev. B 64, 0454001 (2001)

    Google Scholar 

  35. G. Bheme, T. Hesjedal, E. Chilla, H.-J. Fröhlich, Transverse surface acoustic wave detection by scanning acoustic force microscopy. Appl. Phys. Lett. 73, 882 (1998)

    Google Scholar 

  36. G. Behme, T. Hesjedal, Simultaneous bimodal surface acoustic-wave velocity measurements by scanning acoustic force microscopy. Appl. Phys. Lett. 77, 759 (2000)

    Google Scholar 

  37. F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177 (1997)

    Google Scholar 

  38. G. Behme, T. Hesjedal, Influence of ultrasonic surface acoustic waves on local friction studied by lateral force microscopy. Appl. Phys. A 70, 361 (2000)

    Google Scholar 

  39. G. Behme, T. Hesjedal, Influence of surface acoustic waves on lateral forces in scanning force microscopies. J. Appl. Phys. 89, 4850 (2001)

    Google Scholar 

  40. T. Hesjedal, G. Behme, The origin of ultrasound-induced friction reduction in microscopic mechanical contacts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 356 (2002)

    Google Scholar 

  41. K. Inagaki, O. Matsuda, O.B. Wright, Hysteresis of the cantilever shift in ultrasonic force microscopy. Appl. Phys. Lett. 80, 2386 (2002)

    Google Scholar 

  42. R. Szoszkiewicz, B.D. Huey, O.V.Kolosov, G.A.D. Briggs, G. Gremaud, A.J. Kulik, Tribology and ultrasonic hysteresis at local scales. Appl. Surf. Sci. 219, 54 (2003)

    Google Scholar 

  43. R. Szoszkiewicz, A.J. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)

    Google Scholar 

  44. R. Szoszkiewicz, B. Bhushan, B.D. Huey, A.J. Kulik, G. Gremaud, Correlations between adhesion hysteresis and friction at molecular scales. J. Chem. Phys. 122, 144708 (2005)

    Google Scholar 

  45. R. Szoszkiewicz, A.J. Kulik, G. Gremaud, Quantitative measure of nanoscale adhesion hysteresis by ultrasonic force microscopy. J. Chem. Phys. 122, 134706 (2005)

    Google Scholar 

  46. F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995 (2000)

    Google Scholar 

  47. M. Muraoka, W. Arnold, A method of evaluating local elasticity and adhesion energy from the nonlinear response of AFM cantilever vibrations. JSME Int. J. Ser. A 44, 396 (2001)

    Google Scholar 

  48. N.S. Tambe, B. Bhushan, Recently, a novel AFM-based technique for studying nanoscale friction at velocities near to 10 nm s-1 has been implemented; see A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J. Phys. D: Appl. Phys. 38, 764 (2005)

    Google Scholar 

  49. J. Gao, W.D. Luedtke, U. Landman, Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033 (1998)

    Google Scholar 

  50. M. Heuberger, C. Drummond, J. Israelachvili, Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)

    Google Scholar 

  51. A. Socoliuc, E. Gnecco et al., submitted.

    Google Scholar 

  52. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Google Scholar 

  53. J. Kerssemakers, J.T M. De Hosson, Probing the interface potential in stick/slip friction by a lateral force modulation technique. Surf. Sci. 417, 281 (1998)

    Google Scholar 

  54. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune, Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91 (2003)

    Google Scholar 

  55. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 523 (2004)

    Google Scholar 

  56. Z. Tshiprut, A.E. Filippov, M. Urbakh, Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)

    Google Scholar 

  57. J. Israelachvili, Chapter 15 in Intermolecular and Surface Forces, 2nd Ed (Academic Press Elsevier Ltd, New york, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cuberes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuberes, M.T. (2015). Nanoscale Friction and Ultrasonics. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_3

Download citation

Publish with us

Policies and ethics